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Abstract

Climate change is expected to impact across every domain of society, including health.
The majority of the world’s population is susceptible to pathological, infectious disease
whose life cycles are sensitive to environmental factors across different physical phases
including air, water and soil. Nearly all so-called neglected tropical diseases (NTDs) fall
into this category, meaning that future geographic patterns of transmission of dozens of
infections are likely to be affected by climate change over the short (seasonal), medium
(annual) and long (decadal) term. This review offers an introduction into the terms and
processes deployed in modelling climate change and reviews the state of the art in
terms of research into how climate change may affect future transmission of NTDs.
The 34 infections included in this chapter are drawn from the WHO NTD list and the
WHO blueprint list of priority diseases. For the majority of infections, some evidence
is available of which environmental factors contribute to the population biology of par-
asites, vectors and zoonotic hosts. There is a general paucity of published research on
the potential effects of decadal climate change, with some exceptions, mainly in vector-
borne diseases.

1. INTRODUCTION

Much has been written about climate change and its potential impact

on civilisations in the coming decades. The news is rarely positive—from

predicting an increasing frequency of el Nino events (Cai et al., 2014) to

reduction in biodiversity (Mantyka-Pringle et al., 2015) and reduced wheat

production (Asseng et al., 2015). There are likely to be substantial effects on

illness and mortality statistics, disproportionately affecting poorer regions

(Patz et al., 2005). The consensus now rests with those who consider the

anticipated change to be anthropogenic in nature. Despite this consensus,

however, there is still much uncertainty about what the future holds for

wider aspects of human health (Wardekker et al., 2012).

Within the wider domain of climate and health, the neglected tropical

diseases (Hotez et al., 2006), often abbreviated to NTDs, are a collection

of infectious diseases affecting hundreds of millions of individuals living
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in tropical countries. In recent years, there has been considerable increase in

investment towards reducing the burden of several NTDs (Molyneux et al.,

2017), but they still collectively contribute to productivity loss (reviewed by

Conteh et al., 2010), illness and suffering in many countries, including sev-

eral within the G20 (Hotez, 2014). Recent estimates of their overall burden

suggest NTD kill over 350,000 people per annum and cause the loss of

between 27 and 56 million disability-adjusted life years (Hotez et al., 2014).

Climate change projections are typically associated looking forward sev-

eral decades, often reaching out as far as 100 years or more (Collins et al.,

2013). NTDs are a contemporary issue and are subject to attempts to elim-

inate them as a public health problem, or even eradicate them from the

planet. The timescale for these activities is typically around a decade. At

the time of writing, the dates 2020 and 2030 feature prominently in docu-

ments including the WHO roadmaps (World Health Organisation, 2012,

2013a, 2016a).

The latestWHOdocuments regarding the roadmap forNTD control also

mentions climate change in a number of places (World Health Organisation,

2017). There exists a ‘Climate and Health atlas’, published in 2012 (World

Health Organisation, 2013b) that is referred to by the WHO literature,

and ‘which explores the numerous and variable effects of climate change

on infectious diseases, including NTDs’. On closer inspection, however,

the Climate and Health Atlas contains only material on meningitis, dengue,

malaria and diarrhoea.

Simultaneous to the technical and targeted approaches being rec-

ommended by WHO are much wider attempts at sustainable development,

most visible through the lens of the sustainable development goals (Griggs

et al., 2013). Aspects of the NTD impact on health and productivity perme-

ate many SDG themes (Bangert et al., 2017), including Goal 3 (Health),

which even contains a target for NTDs, namely Target 3.3: ‘By 2030,

end the epidemics of AIDS, tuberculosis, malaria and neglected tropical dis-

eases and combat hepatitis, water-borne diseases and other communicable

diseases’ (Fitzpatrick and Engels, 2016).

Success in implementing the WHO plans and the SDGs could spell the

end for some or all the NTDs. But considerable literature exists, primarily

derived from studies of parasites affecting wildlife that global environmental

change may lead to responses by hosts, vectors and parasites themselves that

could affect the outcome of interventions (Cable et al., 2017). Thus, it will

be important to consider not just meeting targets set within the SDG and

WHO documents, but how those targets are met.
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In reviewing how decadal climate change may impact on the future trans-

mission of theNTDs, it is necessary to be somewhat pessimistic and assume that

mostNTDs are not going to be eliminatedor eradicated by 2030.This includes

assuming that policy change associated with SDGGoal 13 ‘Action onClimate’

does not result in returning the climate to preindustrial levels—a target that at

the time of writing looked increasingly unreachable (UNEP, 2017).

The tension between contemporary knowledge and future projections

can be resolved partially by deploying a universal caveat—namely by stating

that future projections may be valid, ‘all other things being equal’. Given

future uncertainties in terms of climate change scenarios (described below),

it is highly unlikely that anything will remain equal over the coming decades.

Anthropogenic activities connected to, or independent of, climate change

will also have an impact, e.g., through early case detection combined with

equal access to medicines. The point of existing research into climate change

and health is therefore not to give definitive conclusions but to reach interim

conclusions that feed into the next round of projections which can consider

a range of natural and anthropogenic interventions.

The ‘precautionary principle’ as applied widely to environmental science

(Kriebel et al., 2001), and specifically to climate change (Hallegatte, 2009) is

also relevant in terms of understanding why climate change research is

important. Under this principle, it is not necessary to fully understand the

factors that underpin and contribute to a particular situation in order to take

action. However, it is also important to recognise that (1) any particular

action can have unintended consequences and (2) linearly scaled up solutions

do not always work as intended across all scales of intervention (Mangham

and Hanson, 2010). Thus, applying the precautionary principle in terms of

action against climate change, or any other domain contained within the

SDGs, may not sufficient to guarantee a future free of NTDs.

2. AIMS

The main aims of this chapter are (1) to review crosscutting issues that

are likely to affect future transmission of NTDs, (2) to provide information

about the current state of the art with respect to investigations into climate

change and NTD transmission and (3) to identify gaps in knowledge with a

view to identifying potential areas of research activity. The review considers

34 different species of established or emerging public health importance,

drawn from the WHO list of NTDs and the WHO blueprint list of priority

diseases. Infections are listed in Table 1 along with brief descriptions of their

climate-sensitive life stages.
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Table 1 List of Infections Considered Within This Chapter Drawn From the WHO R&D
Blueprint Diseases (A) and the WHO NTD List (B), Together With Their Poikilothermic
(Climate Sensitive) Stages and/or Vectors and/or Zoonotic Hosts

A. WHO Priority Diseases Vectors

Zoonotic or
Intermediate
Hosts

Poikilothermic
Stages

Arenaviral haemorrhagic

fevers (including Lassa

fever)

— Mastomys spp. Mastomys

urine, faeces

Crimean Congo

Haemorrhagic Fever

(CCHF)

Ioxid ticks — —

Filoviral diseases

(including Ebola and

Marburg)

— Diverse taxa

including bats

and apes

—

Corona viruses (MERS-

CoV and SARS)

— Bats and palm

civets

Bat excreta and

aerosolised

virus

Nipah and related

henipaviral diseases

— Fruit bats Bat excreta

Rift Valley fever (RVF) Various mosquitoes

including Anopheles

and Culex

— —

Severe fever with

thrombocytopenia

syndrome (SFTS)

Ioxid ticks — —

Zika Aedes — —

B. WHO NTD List Vectors

Zoonotic or
Intermediate
Hosts

Poikilothermic
Stages

Buruli ulcer Naucoridae Fish and

shellfish

Unknown

Chagas disease Triatominae Dogs and other

mammals

—

Dengue Aedes

Echinococcosis — Canidae,

farmed

mammals

Eggs in soil

African trypanosomiasis Glossina — —

Continued
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3. A PARASITOLOGIST’S GUIDE TO CLIMATE CHANGE

Detailed insights into the causes and drivers of climate change are

available elsewhere (IPCC, 2013). To understand how climate change

may change the landscape of transmission for NTDs, I begin with somemac-

roscale considerations of the underpinning physics of climate change and a

description of how we interpret the climate change vernacular.

Table 1 List of Infections Considered Within This Chapter Drawn From the WHO R&D
Blueprint Diseases (A) and the WHO NTD List (B), Together With Their Poikilothermic
(Climate Sensitive) Stages and/or Vectors and/or Zoonotic Hosts—cont’d

B. WHO NTD List Vectors

Zoonotic or
Intermediate
Hosts

Poikilothermic
Stages

Leishmaniasis Phlebotominae Dogs

Leprosy — — Bacterium in

water

Lymphatic filariasis Anopheles and Culex — —

Onchocerciasis Simulium — —

Rabies — Dogs and bats —

Schistosomiasis — Water snails Miracidia and

cercaria

Soil-transmitted

helminthiasis

— — Eggs in soil

Guinea worm Copepods Larvae

Cysticercosis — Swine Eggs in soil

Trachoma Musca — —

Fascioliasis Freshwater

snails

Eggs, miracidia

and cercariae

Paragonimus Crustaceans Eggs, miracidia

and (meta)

cercariae

Clonorchiasis and

Opisthorchiasis

Freshwater

snails, fish and

crustaceans

Eggs, miracidia

and (meta)

cercariae
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Historic observations support the basic tenet of climate change which is

that increasing levels of so-called greenhouse gases have driven upwards the

global mean surface temperature (Hartmann et al., 2013). The characteristic

of a greenhouse gas is that it influences ‘radiative forcing’ towards a more

positive value. Radiative forcing is defined as a rate of change in energy

per unit area (measured in W/m2) of the upper atmosphere. As greenhouse

gasses (also known as radiative forcing components or climate sensitivities)

trap more of the incoming energy from the sun, so the ratio of incoming vs

reflected energy gets greater and the radiative forcing value increases (Fig. 1).

The Intergovernmental Panel on Climate Change (IPCC) has adopted

several representative climate change scenarios throughout its working his-

tory. The aim of these scenarios has consistently been to present policymakers

and research scientist possible outcomes associated with specific narratives

which have then been modelled using methods summarised later. The first

iteration of these scenarios consisted of so-called ‘Special Report on Emis-

sions Scenarios’ (Nakicenovic et al., 2000). They are known as A1, B1,

Fig. 1 The role of greenhouses in terms of climate change is to affect the balance
between surface and atmospheric energy absorption and emission (the energy budget).
Increasing the back radiation will affect global temperature changes, the carbon and
water cycles and have both direct and indirect effects at various scales across multiple
domains of organisation as illustrated in Fig. 2.
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A2 and B2. The A1 scenario predicts a futureworld that converges in terms of

rapid economic growth, and rapid introduction of more efficient technolo-

gies. The A2 scenario indicates a more fragmented world with slower rates of

development. The B1 scenario describes a convergent world with a static

population, and the B2 scenario describes a world with intermediate popu-

lation growth and technological development.

The so-called relative concentration pathways (RCPs), rather than being

based on socioeconomic scenarios, use radiative forcing narratives to project

global warming trends over the coming decades. They differ from the SRES

family by decoupling climate modelling from scenario development and

thereby allow for independent modelling of specific interventions, rather

than having them built in at the onset. These scenarios are known as

RCP2.6 (van Vuuren et al., 2011a), RCP4.5 (Thomson et al. 2011),

RCP6 (Masui et al., 2011) and RCP8.5 (Riahi et al., 2011). The nomen-

clature of these pathways corresponds specifically to the anticipated change

in the global average level of radiative forcing in the year 2100 compared to

preindustrial levels. So, for example, RCP2.6 represents a change of

2.6 W/m2 over this time period.

TheRCPs have been developed over several years by research teams that

modelled changes to the atmosphere based on projected anthropogenic

drivers of greenhouse gasses. Each RCP imagines a particular future where

levels of CO2 and other gasses are either reduced or increased by changes in

the drivers of emissions. For example, RCP2.6 is the output of models that

combine reforestation programmes, reduced methane emissions and mod-

erate population growth. Conversely, RCP8.5 considers a future where

methane emissions increase substantially, there is considerable population

growth and continued heavy reliance on fossil fuels. RCP2.6 is considered

to be ‘reversible’ and in the underpinning models it is suggested that emis-

sions will peak in 2050 before returning to historically normal values by

2100. Conversely, RCP8.5 summarises a future of no climate policies

and no possibility of return to historic levels of emission.

RCPs are associated with integrated assessment models (van Vuuren

et al., 2011b) to produce time series data of emissions that act as inputs into

more complex Atmosphere-Ocean Global Circulation models (AOGCMs).

The next step in producing state-of-the-art projections is to develop earth

system models (ESMs) that include both land and ocean biogeochemistry.

Combining AOGCMs and ESMs leads to multimodel ‘experiments’ that

project global temperature, precipitation and other variables over coming

decades. The experiment known as CMIP5 is capable of producing dozens
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of different simulated output variables (Taylor et al., 2012) including snow-

fall flux, zooplankton carbon concentration, near-surface wind speed, evapo-

ration, soil temperature andwater content.The spatial and temporal resolutions

of these outputs can be specified depending on need andwithin the limits of the

available IT infrastructure. Daily estimates of precipitation and temperature are

now available, for example through the NASA Earth Exchange Global Daily

Downscaled Projections (NEX-GDDP) at a temporal resolution of 1 day and a

spatial resolution of 0.25 degree (approximately 25 � 25km). One of the crit-

icisms of highly detailed models is that as they become more realistic, they

become more uncertain (Maslin and Austin, 2012).

4. CROSSCUTTING ENVIRONMENTAL AND
ANTHROPOCENTRIC ISSUES

Evidence suggests that recent climate change is already affecting the

phenology of a wide range of organisms across the globe (Walther et al.,

2002). From the relatively simple concept of climate forcing springs a hugely

complex and interactive web of interacting ecosystems that might impact on

the ecology of hosts, parasites and vectors over both time and space. This idea

has been previously and commonly referred to as chaos theory, or the but-

terfly effect, originally proposed by Lorenz (1963) in terms of long-term

weather prediction. Below I summarise some important elements of antici-

pated change that evidence suggests may impact on NTD ecology.

4.1 Asynchrony
Life cycles of several parasitic infections, particularly those with a life cycle

involving a vector or intermediate host, rely on circadian rhythms to ensure

that transmission stages are available at the same time as the host is exposed to

the intermediate host or vector. For example, it has been long established

that malaria parasites exhibit circadian patterns in emergence from red-blood

cells (Mideo et al., 2013), and also well known that schistosome cercariae

exhibit a circadian pattern of emergence from snail hosts (Mintsa-Ngu�ema

et al., 2014). Less well known is that humans excrete eggs of schistosome par-

asites in a circadian pattern, with peak excretion late morning (Doehring

et al., 1983; Hawking, 1975). Climate change has the potential to create

asynchrony by either changing host behaviour (e.g. time of faecal expulsion

change as a result of abiotic and biotic pressures on host behaviour), or by

disrupting the availability of hosts at the time required to complete the life

cycle (e.g., by forcing a range shift). Evidence for this occurring already
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has emerged from studies of livestock carrying Nematodirus battus (Gethings

et al., 2015).

The net result of asynchrony may be to reduce disease in the short term,

but it may also place a selection pressure on the parasites, selecting those var-

iants that induce the host to expel transmission stages at a time appropriate to

the new system. Variation in the timing of peak output of schistosome cer-

cariae from snails has been recorded across different species of definitive host

(Th�eron, 2015)—indicating that selection pressures can alter circadian

emergence patterns. It remains to be seen whether the selection pressure will

be sufficiently strong to produce new timing peaks in the future, and

whether the potential for reducing disease will be offset by increased abun-

dance of both vectors and hosts.

4.2 Scale
NTD is so called because their geographical distribution is bounded by envi-

ronmental conditions normally encountered between the lines of latitude

denoted as the tropic of Cancer and Capricorn. There is some evidence that

the width of the tropics, or at least the arid tropical edge, is increasing north-

wards and southwards at a rate of between 0.5 and 1 degrees latitude in each

direction each decade (Lucas et al., 2014), possibly in part due to strato-

spheric ozone depletion at the poles (Kang et al., 2011). What remains

unclear is not just how best to measure changes in the area constituting

the tropics and subtropics (reviewed by Lucas et al., 2014), but also how

individual vegetation and other zones within the geographic tropics will

vary locally in their biotic and abiotic characteristics.

Climate change is likely to have an effect at every scale of biological,

social, ecological and geographical organisation (Fig. 2). Local scale consid-

erations are important in terms understanding the effects of climate change

on NTDs because the life history traits of many species of organism involved

in NTD life cycles are tied to a particular environmental envelope. Ecolo-

gists continue to debate whether or not heterogeneity in abiotic resources at

a particular scale is associated with diversity of organisms (Lundholm, 2009),

but it remains true that microclimatic variation is a driver of species abun-

dance at a very local level. The availability of specific habitats is a require-

ment for many vector and intermediate host species. For example, eggs of

helminth species require specific abiotic and biotic conditions to thrive.

Intermediate snail hosts require vegetation that is anchored in a substrate that

will supply appropriate nutrients.
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The relationship between spatial diversity in abiotic, biotic resources,

host availability and parasite distribution remains poorly understood in

the NTD context. Studies of wildlife populations offer some insights into

the drivers of current relationships (Ellis et al., 2015), pointing to a complex

system of host-switching and localised adaption driven by host availability at

specific locations.

As the local soil and water chemistry alters as a result of changes to the

local climate, it can be expected that current patterns of heterogeneous trans-

mission will change in the future. Areas that are currently unsuitable for

transmission, perhaps because of a lack of suitable vegetation to support

an intermediate or zoonotic host, may become more suitable at some point

in the future.

4.3 Population Movement, Urbanisation and Growth
While considering the effects of changing temperature and precipitation pat-

terns is a vital component of understanding climate change and NTDs, it is

also necessary to take a step sideways to consider other anthropocentric

aspects of global environmental change that are directly or indirectly con-

nected to climate change.

Population movement for reasons ranging from tourism to labour migra-

tion is an important component in the epidemiology of several NTDs

Fig. 2 Illustration of the range of scales within ecological, biogeographical, social and
geographical domains of organisation that will be affected directly or indirectly by cli-
mate change. The terms ‘macro’ and ‘micro’ are relative to each domain.
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(Aagaard-Hansen et al., 2010). Urbanisation, as a major subdomain of pop-

ulation movement is now considered to be not just a driver of climate

change (Kalnay and Cai, 2003), but also a consequence of climate change

(Barrios et al., 2006). As people move to the cities because of, e.g., failing

crops due to prolonged drought (Barrios et al., 2006), they will contribute

to increased emissions and potentially expose themselves to NTDs that

thrive in urban situations, including Dengue (Were, 2012).

Water demand. Global water demand is projected to increase significantly,

particularly in terms of water needs for irrigation (reviewed by Wang et al.,

2017). Globally, water scarcity is expected to increase (Gosling and Arnell,

2016). The fragmented nature of the change (van Vliet et al., 2013) may lead

to selective national or international population migration from at risk areas,

as has been observed in various countries (reviewed byObokata et al., 2014),

including Ethiopia (Gray and Mueller, 2012), Mexico (Nawrotzki et al.,

2015) and South Africa (Mastrorillo et al., 2016). Fig. 3 illustrates known

international movements attributable to water-based climatic factors such

Fig. 3 Known population movements attributable to climate-based issues including
drought and natural disasters. Points of departure and destination are country level
and based on table 2 of Obokata et al. (2014).
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as drought and flooding. This occurs alongside and in addition to internal

and crossborder migration, often temporary, which has a multitude of

environmental causes (Reuveny and Moore, 2009). Understanding the role

of climate-associated migration is important as individuals who migrate may

carry parasites and cause new outbreaks, as has been observed recently in

Corsica, where Schistosoma hybrids have been observed and attributed to

the mixing of imported Schistosoma haematobium and local Schistosoma bovis

(Boissier et al., 2016).

Urbanisation is associated with population growth (Cohen, 2006), but

not necessarily in a readily predictable or linear manner.Within Africa alone,

the population is expected to double to 2 billion by 2050 (United Nations,

2015), but several models and observations suggest complex patterns of

migration and countermigration depending on the motives and opportuni-

ties (Geyer and Geyer, 2015). Increasing levels of urbanisation associated

with population increase (Satterthwaite, 2009) is nonetheless likely to

impact on the climate substantially—e.g., as land-use changes are enacted

(Pielke, 2005), as habitats are altered and fragmented (Haddad et al.,

2015), as biodiversity decreases (Mooney et al., 2009). Human–wildlife
interactions in both rural (Aryal et al., 2014) and urban (Becker et al.,

2015) locations will inevitably change over the coming decades as a result

of these and other changes.

4.4 Agriculture and Farming
A large fraction of people exposed to NTDs is smallholders or subsistence

farmers dependent on natural water cycles to support crops and/or livestock.

Evidence suggests that climate-associated events such as prolonged drought,

delayed onset of rains, or above normal precipitation can adversely affect a

range of livelihood assets (Ziervogel and Calder, 2003). Small holders and

poorer farmers are more likely to be concerned about heavy rainfall, but

may have no livelihood response due to a lack of assets and entitlements

(Cooper and Wheeler, 2017). This effect may not be universal, as there

is also evidence that farming communities have adapted to harsh environ-

ments over many generations (Kassie et al., 2013; Mortimore and Adams,

2001) to include allocating labour differentially across seasons to mitigate

unpredictable precipitation patterns, increasing biodiversity and diversify-

ing livelihoods.

Food demand and production are likely to change considerably in

coming decades due to population growth, direct and indirect effects of
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climate change (Valin et al., 2014). Various large-scale effects have been

speculated including risks to global food security (Wheeler and von

Braun, 2013) through, e.g., loss of freshwater for irrigation (Elliott et al.,

2014). Simultaneously, the demand for water for aquaculture is rising, bring-

ing the potential for food-borne diseases to become a major issue in coming

decades. Almost 60 species of fish-borne trematode have been described

(Hung et al., 2013). Infections among farmed fish have been associated with

aquaculture practices in several SE Asian countries (reviewed by Lima dos

Santos and Howgate, 2011). Concerns have also been raised regarding

potential spillover from wildlife populations into tilapia productions in

China (Li et al., 2013). The encroachment of wildlife into human commu-

nities is also expected to increase with increased urbanisation, habitat

encroachment, loss and fragmentation (Hassell et al., 2017.)

For NTDs with a zoonotic life cycle that can involve domesticated

animals, the potential effects of climate change cannot be ignored. Livestock

is a driver of climate change due to the emissions of greenhouse gasses within

the system (Gill et al., 2010). Thornton et al. (2009) consider various poten-

tial effects including change in quality and quantity of feed, heat stress and

water security. Potential effects on transmission of infections in livestock

animals have been reviewed by Baylis and Githeko (2006), who suggest

that climate change is likely to have been responsible for the introduction

of several infectious diseases into new areas including bluetongue virus in

the United Kingdom, but also suggest that Fasciola infections in the United

Kingdom may decline due to lower levels of summer rainfall.

4.5 Exposure, Vulnerability and Risk
This review concentrates largely on the ecology and natural history of infec-

tions, as this where most of the literature on NTDS and environmental

change is located. In the IPCC framework on vulnerability and adaptation

(IPCC, 2014), the information contained herein would contribute to

understanding future hazards, as distinct from exposures or vulnerability.

The term ‘Hazard’, quoting directly from IPCC (2014), refers to ‘The

potential occurrence of a natural or human-induced physical event or trend

or physical impact that may cause loss of life, injury, or other health impacts,

as well as damage and loss to property, infrastructure, livelihoods, service

provision, ecosystems, and environmental resources’. The term ‘Exposure’

refers to ‘The presence of people, livelihoods, species or ecosystems, envi-

ronmental functions, services, and resources, infrastructure’. The term
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‘vulnerability’ refers to ‘The propensity or predisposition to be adversely

affected. Vulnerability encompasses a variety of concepts and elements

including sensitivity or susceptibility to harm and lack of capacity to cope

and adapt’. The term ‘Risk’ refers to the ‘… probability of occurrence of

hazardous events or trends multiplied by the impacts if these events or trends

occur. Risk results from the interaction of vulnerability, exposure, and haz-

ard …’. Fig. 4 illustrates how these issues are connected and interact in the

context of climate change and NTDs.

Vulnerability is a contested term in the risk-reduction community

(F€ussel, 2007) but has its roots in geography and social sciences, often

referring to indicators such as socioeconomic status, the political economy,

human agency and social capital. In relation to infectious diseases, vulnera-

bility has been historically assessed in these contexts for HIV, TB andMalaria

in Europe (Bates et al., 2004). The EU funded Healthy Futures programme

(www.healthyfutures.eu) adopted the IPCC vulnerability–hazard-risk
framework to produce risk maps related to decadal climate change in the

context of Rift Valley Fever, Malaria and S. mansoni in East Africa

(Taylor et al., 2016). In that project, stakeholder analysis and expert consul-

tation were deployed to provide weighted indicators that could be included

in the vulnerability domain. A comparative approach to estimating vulner-

ability that compared the expert-weighting approach to statistical modelling

found high concordance in the context of modelling vulnerability to

Dengue (Hagenlocher et al., 2013).

5. ENVIRONMENTAL PHASES

5.1 Soil
Soil is the upper covering layer of the earth, consisting of three subphases

(water, gas and solids) which combine to describe the overall mechanics

and other properties. Typically, soil properties vary in terms of texture (par-

ticle size and distribution), chemical and mineralogical properties, surface

area and particle aggregation (related to aeration, compaction, temperature

and water retention). The overall structure, mechanics and properties of a

soil matrix are also influenced by a range of other factors such as the amount

and properties of organic matter (detritus), oxides, clays, living vegetation,

bacteria and fungi.

Recent theoretical and empirical studies have improved understanding

of soil processes, mainly from the viewpoint of ensuring ‘soil security’

(Amundson et al., 2015). However, there are still many gaps in knowledge
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Fig. 4 A core concept of the IPCC (2014) report on vulnerability and adaptations is that risks to populations are formed by interactions
between sources of hazard, vulnerability and exposure. In the context of NTDs, natural and anthropogenic inputs—including interventions
such as WASH and vector control—combine to affect the life cycles of climate-sensitive stages (the hazard). Simultaneously a wide variety of
societal inputs can affect vulnerability and exposure levels, and can lead to mitigations that modify emissions and habitats to affect the
NTD-associated hazard. A lack of adaptive inputs is likely to lead to higher exposure, vulnerability, hazards and risk.



of how a changing climates might affect ‘soil health’—defined as ‘the capacity

of a specific kind of soil to function, within natural or managed ecosystem

boundaries, to sustain plant and animal productivity, maintain or enhance

water and air quality, and support human health and habitation’ (Doran and

Zeiss, 2000).

Soil is essential to the natural history of many parasites and/or their vec-

tors; examples include eggs of geohelminths (Steinbaum et al., 2016), larvae

of Tsetse flies (Leak, 1999) and burrows of mammals fed on by triatominae

insects (Miles et al., 1981). An understanding of how changes to the soil

phase will affect the survival of these and other life stages is an essential

component of understanding the wider impact of climate change on trans-

mission. Part of this process is likely to include a better understanding

of how microgeographical variation in soil chemistry affects herb-layer

vegetation (Bruelheide and Udelhoven, 2005).

5.2 Water
A central tenet of climate change is rising temperatures in the water phase,

including freshwater and marine domains (see above). Temperature change,

combined with population growth, and many other factors related to future

aspects of landscape, hydrology, human behaviour, water and sanitation

infrastructure, water- and land-use, is likely to have profound effects on

many aspects of the water budget. The global hydrological cycle is thereby

expected to undergo potentially profound changes (Held and Soden, 2006).

Here I summarise some of the key aspects that are relevant to NTD natural

history.

5.2.1 Precipitation
It is likely that anthropogenic influences differentially affected precipitation

during the 20th century depending on region—with increase precipitation

in (very broadly speaking) northern latitudes and decreased precipitation in

southern latitudes (Zhang et al., 2007). Projecting precipitation patterns into

the 21st century has proved more challenging than temperature (Schaller

et al., 2011). Consensus is emerging that extremes of precipitation are likely

to increase in frequency (Knapp et al., 2015). Also of concern is increased

frequency of drought (Dewes et al., 2017) and flooding (Hirabayashi

et al., 2013), although there is still considerable debate on the role of

anthropogenic drivers underpinning these changes (Kundzewicz et al.,

2014). This alteration in hydrological stability may nonetheless impact on

not just aquatic habitats (Marino et al., 2017), groundwater and streamflow
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(Taylor et al., 2013) but also the carbon cycle (Haverd et al., 2017), soil mois-

ture and vegetation phenology (Richardson et al., 2013). Effects may

include fragmented changes to freshwater systems, due to, for example,

changes to location-specific river discharges (Schewe et al., 2014) and

recharges (Hartmann et al., 2017).

Increased precipitation in urban areas without adequate capacity to adapt

or mitigate the situation has been associated with outbreaks of Dengue in

several countries, including India (Mutheneni et al., 2017) and Bangladesh

(Karim et al., 2012). Similarly, abundance of freshwater snails acting as

intermediate hosts in the schistosome life cycle, as well as transmission of

the parasite, are known to peak at specific times of year, depending on loca-

tion (reviewed by Rollinson, 2011) and driven by climatic factors including

rainfall (e.g. Moser et al., 2014).

Climate change-driven changes to the water balance, such that affect soil

moisture conditions, are also likely to affect suitability of specific habitats for

soil-transmitted helminths. Seasonality of hookworm transmission in several

countries including South Africa (Mabaso et al., 2003), Nigeria (Nwosu and

Anya, 1980) and Timor Leste (Wardell et al., 2017) has been at least partly

attributed to seasonal precipitation.

5.2.2 Thermal Tolerance
Thermal tolerance may be a critical issue for many water-based, or semi-

aquatic organisms involved in the life cycles of NTDS—including insects,

freshwater snails, fish, crabs, copepods, crayfish and insects. Poikilothermic

ectotherms such as these consume oxygen based on the water or temperature

until some threshold temperature where ATP supply and demand is over-

whelmingly disrupted and the organism dies (Poertner, 2001). Tropical

species may have relatively wide tolerances, but may also be more vulnerable

to increases in temperature due to already inhabiting water bodies with tem-

peratures close to their thermal limits (Sunday et al., 2012). Whether mean

increases in temperature are more important than changes in diurnal varia-

tion is being debated in the literature (Vasseur et al., 2014).

5.2.3 Stratification
The life cycles of several NTDs including Schistosoma, the food-borne trem-

atodes and Dracuncula involve intermediate hosts that may inhabit and

reproduce in water bodies with thermal stratification, such as lakes. Analysis

of historic data indicates that global warming is associated with changes to

lake stratification that are dependent on lake morphometry (Kraemer

et al., 2015a). How the intermediate hosts will respond over the coming
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decades is unclear, but evidence suggests evolution may have led to diver-

gent populations of copepods that have adapted to warmer or colder con-

ditions (Wallace et al., 2014).

5.2.4 Sea Levels
Rising sea levels are expected to impact significantly on coastal areas, not just

in terms of flood risk but also in terms of the influx of salt water into coastal

fresh water systems. Evidence of the effects on ecosystems is emerging in the

literature. For example, saltwater intrusion into tropical rivers can affect the

bacteria of floodplain soils by altering both the salinity and pH (Nelson et al.,

2016). Increase in the influx of brackish water in coastal areas due to sea level

changes has been implicated as the reason behind an increase in the abun-

dance of salinity-tolerant Aedes mosquitoes in the Sri Lankan context

(Ramasamy and Surendran, 2012).

5.2.5 Mitigation
Mitigating the challenges outlined above through providing sustainable

water resources forms part of SDG Goal 6—the other key component

for NTDs being access to sanitation and hygiene ‘for all’ by 2030. This latter

aspect, commonly termed water, sanitation and hygiene (WASH) is consid-

ered crucial in reducing transmission of STH (Freeman et al., 2013), tra-

choma (Stocks et al., 2014), schistosomiasis (Grimes et al., 2014) and

Entamoeba (Speich et al., 2016).

Our warning from history on this subject is quite clear. Development

projects with all good intentions, related to water infrastructure in particular,

have themselves been associated with increased transmission of parasitic

infections including malaria in unstable areas (Ijumba and Lindsay, 2001;

Kibret et al., 2017), filariasis (Erlanger et al., 2005) and schistosomiasis

(e.g. N’Goran et al., 1997). In the latter case, concerns have been raised

recently about how a large-scale water conservation project could translo-

cate Oncomelania hupensis (an intermediate host snail of S. japonica) in China

(Liang et al., 2012; Zhu et al., 2017), how migration of seasonal workers

related to dam construction might have led to admixture of S. mansoni

populations in Senegal (Van den Broeck et al., 2015), how dam construction

could affect the transmission of Schistosoma mekongi in Laos (Attwood and

Upatham, 2012) and prevent the migration of snail-eating prawns across

sub-Saharan Africa (Sokolow et al., 2017). These and other examples

remind us of the importance of implementing health in all policies

(Rudolph et al., 2013) when undertaking sustainable development projects.
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5.3 Air
The central tenet of climate change is the forcing effects of so-called ‘green-

house’ gasses including CO2 and aerosols. Forcing in this context means the

impact that production of these gasses has on the balance of energy in the

atmosphere. As greenhouse gasses increase in density, they tip the energy

balance positively and positive forcing ensues. All climate models derive

from this process and then simulate how varying degrees of forcing will

affect global air and land surface temperatures.

Tropical climates are typically governed by the Intertropical Convergent

Zone (ITCZ). The ITCZ is a belt of low pressure surrounding the earth close

to the equator that moves between the tropics of cancer and capricorn at dif-

ferent times of year. It is thismovement that generates the characteristic dry and

rainy seasons in countries located within the tropics (for animation click here):

http://www2.palomar.edu/users/pdeen/animations/23_weatherpat.swf.

The dynamics and positioning of the ITCZ are highly sensitive to small

changes in the global energy balance (Sachs et al., 2009; Schneider et al.,

2014). Models struggle to predict the future dynamics of the ITCZ

(Bony et al., 2015), and until the models can project the future of the ITCZ

in relation to climate scenarios it will be challenging to model the transmis-

sion of NTDs effectively.

The relationship between surface air temperature (as predicted by cli-

mate projections) is generally assumed to be correlated, over decadal scales,

with the ground surface temperature, but over shorter time scales there may

be considerable variability. Soil acts as a heatsink and conducts heat from the

air on a daily timescale, resulting in some level of phase shifting that depends

on location and other variables including precipitation (Smerdon et al.,

2004). Abiotic changes to the soil as a result to changes in air temperature

may affect the natural history of a wide range of NTDS as diverse as trypano-

somes and cestodes.

6. CROSSCUTTING MODELLING ISSUES

6.1 Scale
Downscaling is a recently developed process, derived from subnational

weather forecasting, to improve the spatial resolution of GCMs over limited

areas (Dickinson et al., 1989). A broad and accessible overview of the meth-

odologies is available elsewhere (USAID, 2014). Here I summarise some of

the key methods.
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Statistical downscaling is a two-step process that involves understanding

statistical relationships between observations at one point over time and

GCM outputs at that location over the same time period, and correcting

the GCM output to more closely resemble the observations (also known

as bias correction). Statistical downscaling is computationally inexpensive

but has low utility if the observations are scarce over time and space,

and/or if the relationship between GCM and observations changes

over time.

Dynamical downscaling (also known as generating regional climate

models or RCM) is a process whereby a GCM is run and the lateral bound-

ary outputs at the edge of the RCM region are used as the initial conditions

of an RCM using the same physics-based model as the GCM but at a

higher spatial resolution and over a relatively small area. The output of

this computationally intensive process is a climate model at relatively

high spatial resolution compared to the GCM (typically less than 0.5

degree).

In the context of understanding how climate change might affect local

scale transmission of NTDs, RCMs arguably have greater utility than sta-

tistical models as they can be run on relatively sparse observations. Their

disadvantage, apart from computing costs, is that each individual model

can output widely differentiated products in regions with complex cli-

mates and widely varying but sparse observations (e.g. the tropical regions).

For this reason, RCMs are often combined into ensembles with

multiple outputs summarised into a single model that represents the aver-

age of all models in the ensemble. RCM ensembles, made available

through the coordinated regional climate downscaling experiment have

been used to model future precipitation over the African continent

(Nikulin et al., 2012).

Despite recent advances, none of the current models predict or project

temperature at a microgeographical scale, which is considered a major lim-

itation in estimating how a particular organismmay be vulnerable to a future

climate (Scheffers et al., 2014; Storlie et al., 2014). Furthermore, the choice

of RCP tends to be arbitrary as there are many possible future climate

scenarios (Fuss et al., 2014), and a more objective approach is therefore

needed when selecting a particular scenario (Casajus et al., 2016). Estimating

precipitation continues to challenge the modelling community, due partly

to the complex interaction between temperature and rainfall (Zhang

et al., 2007), including the influence of fine-scale drivers of cloud formation

and rainfall.
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6.2 Absence vs Missing Data
All models are limited by the absence of data. There is a need to distinguish

between absence and missing data in order to reduce potential bias. In their

attempts to address this issue when working on leishmaniasis, Carvalho et al.

(2015) tested several ecological niche modelling algorithms and concluded

that the inclusion of absence data improved model performance. A range of

modelling approaches benefit from inclusion of absence data (Li and Guo,

2013) if a survey has been undertaken in the area and the absence has been

confirmed by direct observation. If there has been no survey in a particular

area the data are missing and cannot be used in place of absence data. This is

one of the major factors preventing accurate mapping of several NTDs or

their vectors. The Maxent approach, as used by authors researching various

parasites including leishmaniasis Peterson and Shaw (2003) and lymphatic

filariasis (Slater and Michael, 2012) is a valuable tool for analysing

presence-only data. Process-based mapping issue, as used by Stensgaard

et al. (2016), can ameliorate the problem to an extent by predicting where

the environment may be suitable for a vector or intermediate host based on

the results of experimental observations.

6.3 Uncertainty and Bias
Uncertainty is a fact of climate projections from which it is difficult to

escape. It is not possible to draw data from the future and there are many

possible intermediate scenarios as depicted in Fig. 5. We could end up in

2100 at any one or none of the points on this chart. The RCPs offer useful

touch points for comparative purposes, but every projection of the impact of

climate change must acknowledge the inherent uncertainty.

To illustrate the uncertainty regarding estimating the potential impact of

climate change on NTDs, consider Fig. 6. As surface temperatures warm

theremay be differential effects on transmission ofNTD infections depending

on regional environmental changes. For example, in some places the regional

climate may become too extreme to support vectors or zoonotic hosts,

whereas in others an extreme flooding event may translocate vectors or zoo-

notic hosts fromone part of a river system to another. This level of uncertainty

places additional challenges on modelling future scenarios of not just schisto-

somes but all NTDs due to their tight association with specific environments.

Bias is another universal feature of climate models. Future trends in

warming and precipitation are based on simulations of historic events. Sim-

ulations of those past events produce results that are different to observations.
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Fig. 5 Historical and potential future CO2 emission scenarios to the year 2100, with four
representative concentration pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5). Reproduced
with permission from Fuss, S., et al., 2014. Betting on negative emissions. Nature Climate
Change 4 (10), 850–853. Nature Publishing Group, a division of Macmillan Publishers Lim-
ited. All Rights Reserved. Available at: https://doi.org/10.1038/nclimate2392.

Fig. 6 Generalised framework of how increases in global temperatures and regional
changes to precipitation patterns may lead to increased, translocated or decreased
transmission of NTDs. Central column describes particular temperature and precipitation
changes associated with climate change. Left column describes intermediary steps that
might be expected to increase or translocate transmission. Right column describes inter-
mediary steps that could lead to reduced transmission.
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This is referred to as bias, and the bias is then carried over into future pro-

jections. Bias correction involves correcting the future simulations so that

they more accurately predict the future. The simplest method is the

so-called ‘delta’ method (e.g. Hay et al., 2000). This approach requires

calculating the difference between observed and simulated climate from

the past and applying the difference to simulations of the future. There

are several different types of bias correction available, which are detailed

elsewhere (e.g. Teutschbein and Seibert, 2012).

7. CROSSCUTTING VECTORS AND ZOONOTIC HOSTS

7.1 Mosquitoes
Several genera of mosquitoes are involved in the life cycles of vector-borne

NTDs. Here, I briefly describe factors affecting the life history traits of three

of the main vectors—Aedes,Culex andAnopheles. For a more comprehensive

review of oviposition, see Day (2016).

7.1.1 Aedes
This urban dwelling mosquito is perhaps the most sensitive indicator of how

environmental change can affect transmission of vector-borne diseases.

Many different NTDs are transmitted by various species of Aedes. Two of

the most prominent Aedes species in terms of the number of diseases that

can be transmitted via their feeding mechanism areAedes albopictus andAedes

aegypti. A. albopictus has been observed to carry Yellow fever virus (YFV),

Chikungunya viruses,West Nile virus, Eastern equine encephalitis, Japanese

encephalitis. It can also transmit dog heartworm.A. aegypti can transmit both

Dengue and YFV as well as Chikungunya, Zika virus and Mayaro virus.

Some information is available on how Aedes mosquitoes respond to

pressures exerted by short-term environmental change. For example, it is

now known that gene flow is higher in wet than dry seasons due to transient

selection pressures (Sayson et al., 2015) and that interaction between vectors

and viruses that alters the carrying capacity of the mosquito to vary over time

and space also likely to be important determinants of future transmission in

particular locations (Lambrechts et al., 2009; Yee et al., 2012).

A second important factor may be diapause (Jia et al., 2016, 2017). This

feature of Aedesmosquitoes natural history allows them to suspend develop-

ment during adverse environmental conditions, such as cold weather (Brady

et al., 2013). Both temperature and photoperiodicity affect the length of

dormancy (Yee et al., 2012). Photoperiodicity in particular has been
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identified as a target for potential intervention, with efforts underway to

identify genes that produce potential targets for genetic or chemical disrup-

tion (Huang et al., 2015).

A number of reasons have been cited as responsible for the lack of effec-

tiveness of campaigns to eradicate Aedes mosquitoes historically, even after

initial success. Aedes spp. oviposit in a wide range of man-made containers

(Tun-Lin et al., 2009), adapt oviposition rates to local water conditions

(Wong et al., 2012) and rest after feeding in places that are difficult to reach

with insecticides, including storm drains (Paploski et al., 2016), and on dark

wall surfaces across different rooms of houses (Chadee, 2013; Perich et al.,

2000). From a climate change perspective, it will be important for modelling

efforts to accommodate these extremely successful adaptations of the target

mosquitoes to available environments. One of the key challenges will be to

consider how future rates of urbanisation and climate change connect with

issues such as precipitation, water collection and drainage (Moore et al.,

2016; Semadeni-Davies et al., 2008).

7.1.2 Culex
As with other mosquito vectors, Culex spp. all life stages are ectothermic and

therefore climate sensitive. Species of Culex are currently distributed across

the globe. Culex pipiens complex is the most widely distributed, with mos-

quitoes inhabiting latitudes as far apart as Northern Europe and the South

Island of New Zealand (Farajollahi et al., 2011). In terms of the NTDs cov-

ered within this chapter,C. pipiens complex is responsible for transmission of

Rift Valley fever and lymphatic filariasis. Culex quinquefasciatus is distributed

across the tropics and subtopics and is responsible for the transmission of

lymphatic filariasis and possibly Zika virus (Diallo et al., 2014).

The development of Culex mosquitoes has been demonstrated to corre-

late with temperature in a number of studies. Gunay et al. (2011) observed

that body size of inbred C. quinquefasciatus decreased with increasing tem-

perature (covering the range 20–27°C). This result echoed earlier work

by Rueda et al. (1990) who also observed C. quinquefasciatus body size

parameters (including head capsule width, larval body widths and weight)

decreased with temperature (covering the range 15–34°C). The parabolic

nature of the relationship between temperature and survival was

demonstrated also in that study, with the peak emergence occurring at tem-

peratures between 20 and 30°C and high levels of mortality recorded at

15 and 34°C. A more comprehensive review of the relationship between
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temperature and Culex life history traits is available elsewhere (Ciota

et al., 2014).

Observations on the relationship between temperature and development

of Culex mosquitoes have been used to inform investigations into the

possible effects of climate change on the geographic distribution ofCulex spe-

cies. Morin and Comrie (2013), focusing on the southern United States,

applied their dynamic mosquito simulation model (Morin and Comrie,

2010) to project the distribution of the mosquitoes up to 2050 under a down-

scaled A2 climate scenario. The results of their analysis suggest a pattern of

regional changes that reflect the complex topography of the location under

study, but also an overall trend towards a lengthier mosquito breeding season

combined with a lower abundance in summer months.

Focusing on amore global picture, Samy et al. (2016) combined observed

occurrence data of the contemporary distribution of C. quinquefasciatus with

climatic projections of temperature based on the RCPs (covering RCP2.6,

RCP4.5, RCP6.0 and RCP8.5) and a set of biolimactic variables containing

monthly temperature and rainfall data. Current potential distribution of the

mosquito was then estimated by first estimating, using an ecological niche

model, which bioclimatic variables were contemporaneously associatedwith

the distribution of Culex. From this model, it was then possible to predict

how different RCP scenarios may affect future geographical distribution.

The conclusion from this work was that the limits of the geographical dis-

tribution would increase by up to 4.9% in the future (no specific date given)

between RCP2.6 and RCP6.0 and then decrease under RCP8.5.

7.1.3 Anopheles
Mosquitoes of the Anopheles genus are responsible for the transmission of

malaria and as such have been studied relatively extensively in terms of their

biology and life history. Information on this vector is included here due to its

role in transmission ofWuchereria bancrofti and Brugia malayi (Bockarie et al.,

2008), but with the caveat that species-specific observations may not trans-

late across species.

Anophelene mosquitoes generally lay their eggs singly onto water, and

on hatching the larvae float horizontally to allow breathing. Exceptionally,

viable Anopheles gambiae eggs have been observed in both moist soil

(Minakawa et al., 2001), and dry soil (Bier et al.,) and treeholes (Omlin

et al., 2007). The larvae are amphibious and will move towards water

(Miller et al., 2007).
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As all stages of all species are poikilothermic, the life history traits of

the organism are tightly controlled by environmental conditions from egg

laying onwards (Davies et al., 2016; Lyons et al., 2013). Several other envi-

ronmental factors including pH, water flow and presence of algae are also

important drivers of egg, larval, pupal and adult stage survival, larval feeding

behaviour, larval—adult development time, gonotrophic cycle rate and

population abundance (e.g. Araújo et al., 2012; Gouagna et al., 2012;

Kamara et al., 2015).

Understanding the individual life history traits of individual species is

necessary but not sufficient for modelling purposes. For example, a study

in Nigeria by Lenhart et al. (2007) established that in Nigeria the relative

contribution of A. gambiae, Anopheles arabiensis and Anopheles funestus to

Wuchereria bancrofi transmission is likely to vary over a 12-month period.

Competition between sibling Anopheles species (Paaijmans et al., 2009)

may be partly responsible for the dominance of particular species at different

times, combine with changes to water and/or soil phases that favour the

development of one species over another.

Taking into account all the possible abiotic and biotic factors that influ-

ence Anopheles life history, understanding how climate change might affect

the populations of Anopheles mosquitoes and transmission of filarial infec-

tions is therefore challenging. Evidence is nonetheless emerging that a mix-

ture of anthropogenic activities related to land cover change, combined with

increased temperatures, is shifting the species range in specific areas (e.g.

Fuller et al., 2012; Kulkarni et al., 2016) and may either cause local extinc-

tion (Escobar et al., 2016), or an overall increase in environmental suitability

combined with seasonal and range shifts (e.g. Ryan et al., 2015).

7.1.4 Bats
Bats are either known, or suspected, to be vectors of many zoonotic infec-

tions (Olival et al., 2017) including several filoviruses and hepanaviruses

(Moratelli and Calisher, 2015; Olival and Hayman, 2014). Infections of

humans via bats infected with filoviruses have tended to occur in outbreaks,

which has been hypothesised to occur as a consequence of within-host

dynamics (Plowright et al., 2016). Outbreaks of emerging viral infections,

including filoviruses, have been increasing in recent decades (Smith et al.,

2014) correlating with global environmental change.

Like many nonhuman mammals, bats are acutely susceptible to the

impacts of environmental change, including climate change (Aguiar et al.,

2016; Sherwin et al., 2013). The direction of travel is less certain than the
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anticipation of change. Published species–distribution models suggest that

the fruit bat Pipistrellus kuhlii has extended its range over recent decades as

global temperatures have increased (Ancillotto et al., 2016). Extreme tem-

peratures (>42°C) have been identified as fatal to flying foxes (Welbergen

et al., 2008). A more complex, and localised, situation may exist across all

species, given evidence that the call frequency is affected by temperature

and humidity (Mutumi et al., 2016) and that efficiency of echolocation

(and hence foraging success) is affected by temperature in a convex manner

(Luo et al., 2014).

Known bat vectors of filoviruses include flying foxes and fruit bats

(Table 1). An attempt to predict which of the other existing 1116 bat species

could possibly host filoviruses suggests that candidate species tend to produce

more than 1 L per year of relatively large neonates, inhabit relatively large

geographic ranges of high mammal density and live in larger roosts (Han

et al., 2016). One of the challenges in identifying bat vectors is the lack

of pathology attributable to the viruses themselves, a situation that has led

to the hypothesis that metabolic and internal temperature increases caused

by flight may have led to the evolution of tolerance (O’Shea et al., 2014).

8. DIRECT LIFE CYCLE PARASITES

8.1 Goehelminths
At the time of writing this chapter, there were no original research articles

retrievable through PubMed specifically referring to climate change and

hookworm infections, climate change and geohelminths, climate change

andAscaris lumbricoides infections or climate change andTrichuris trichiura infec-

tions. I therefore summarise here what is known about the climate-sensitive

stages of their life cycles to inform future efforts at statistical and/or dynamic

modelling.

8.1.1 Trichuris
The climate-sensitive stages of the Trichuris spp. life cycle are eggs deposited

onto the ground within faecal matter. Embryonation occurs at a pace depen-

dent on temperature (Beer, 1973), with an optimum rate of development at

approximately 34°C. At this temperature, embryonation and development

to infective stages take approximately 2 weeks. These and other experiments

of temperature on embryonation of Trichuris suis indicate a lower threshold

of 20°C and an upper threshold of approximately 40°C for development of
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the organism (Beer, 1973; Vejzagic et al., 2016). Typically, the soil needs to

be moist (Spindler, 1929). Increasing the pH of the soil can reduce the sur-

vivorship of eggs (O’Donnell et al., 1984), in a temperature-dependent

manner with a rapid reduction in survivorship under alkaline conditions

(Ghiglietti et al., 1995).

Egg survival periods of 2–6 years have been suggested in temperate con-

ditions (Beer, 1973).The upper temperature boundary of approximately 40°C
for development to infective stages is similar to that reported in prevalence

studies among school-aged children, where evidence of transmission has been

observed in communities with land surface temperatures up to 45°C (Brooker

et al., 2004). Other factors related to soil chemistry, including the level of qua-

rtz, may also be important in determining egg survival and viability—sandy

soil channels may form downwhich the eggs fall to become incorporated into

the subsoil and protected from environmental hazards (Brooker et al., 2004).

8.1.2 Ascaris
A. lumbricoides eggs, deposited onto soil within faecal matter, are the climate-

sensitive stage of this roundworm parasite. They are more robust to environ-

mental perturbation than either Trichuris spp. eggs or hookworm larvae due

to being coated in chitin (Meng et al., 1981). Some studies have suggested

the eggs may survive for several years in soil (Rudolfs in Storey and Phillips,

1985). Statistical analysis of bioclimatic data suggests that relatively moderate

amounts of rain are associated with peak infection (Sch€ule et al., 2014).
Changes in relative humidity (RH) under experimental conditions reflect

expected seasonal changes at certain latitudes, with much greater mortality

under simulated field conditions that combined prolonged periods of simu-

lated sunlight and dry soil conditions (Gaasenbeek and Borgsteede, 1998).

In experimental studies, a major determinant of egg longevity has been

reported to be the level of ammonia in the faecal matter (Jensen et al., 2009;

Pecson et al., 2007). A combination of ammonia, temperature and pH is also

deterministic, with the majority of eggs able to survive at pH 7 in low

ammonia conditions at 20°C for several 100 days, whereas conditions com-

bining high pH with high ammonia at 40°C kill the eggs within minutes

(Pecson et al., 2007). In separate studies, it has been reported that egg

survival is also sharply determined by relative survival, with a fall from almost

100% 8-week survival at 100% RH to almost 0% 8-week survival at 7.5%

humidity (Gaasenbeek and Borgsteede, 1998).
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8.1.3 Hookworms
The climate-sensitive stages of hookworm infection are the eggs and lar-

val stages. Much of our current understanding of how abiotic and biotic

variables affect the natural history of these stages comes from research

undertaken many decades in the past (e.g. Chandler, 1929). Like the other

geohelminths the picture is still very incomplete, but nonetheless yields

some relevant information.

The presence of hookworm infection is associated with particular

bioclimatic variables related to temperature and moisture. Soil types are

important with larvae thriving in particularly sandy soils (Mabaso et al.,

2003). Efforts to map the ecological niche suggest arid areas and minimum

temperatures of <20°C are inhibitory (Mudenda et al., 2012), as are tem-

peratures above 30°C (Udonsi and Atata, 1987). The dependence on envi-

ronmental cues for the behaviour of the juvenile worms indicates that a

changing environment which is predisposed to longer periods of dryness

is likely to be detrimental. Under stable and ideal soil conditions, the larvae

may live for several weeks (Augustine, 1923). If the soil becomes more clay

like due to perturbation the larvae are not likely to survive (Payne, 1923). If

there is rapid alteration of drying and moistening, the larvae will likewise

not thrive (Beaver, 1953).

8.1.4 Toxocara
Eggs of Toxocara species are deposited onto land by canids and other animals

upon excretion of faecal matter. The eggs are therefore directly sensitive to

climate factors. Like eggs of other soil-transmitted nematodes, the eggs of

Toxocara spp. have evolved to withstand a range of changes in the abiotic

and biotic features of the soil phase. Specifically in the case of Toxocara canis,

the eggs are able withstand extremes of temperature ranging from below

freezing (O’Lorcain, 1995) to over 30°C (Azam et al., 2012). Toxocara leonis,

which rarely affects humans, has been historically present in artic foxes at

very high latitudes of the Canadian Artic (Elmore et al., 2013), indicating

how this species of this genus have adapted to extreme environmental con-

ditions before through selection pressures.

The microgeographical distribution of Toxocara eggs is affected by con-

ditions including soil texture (Mizgajska, 1997) and oxygenation. Lower

temperatures, lower humidity and low levels of oxygenation slow develop-

ment times (Azam et al., 2012; Gamboa, 2005) leading to diversity in the rate

of maturation depending on geographical location—typically maturation
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times are lower in tropical regions with all year transmission as a result

(Macpherson, 2013).

Evidence for changing patterns ofToxocara infection globally is emerging

from studies of zoonotic infections in northern latitudes lying well beyond

tropical regions. North-west Canada is sited at the southern limit of

the discontinuous permafrost zone, overlapping with the Arctic circle

(>60 degree latitude). High levels of parasitic infection in Artic regions,

excluding Toxocara, have been historically recorded (Hotez, 2010). This

changed in 2006 when a survey of dogs recorded a prevalence of 5%—up

from a prevalence of 0 in previous surveys at the same latitude

(Salb et al., 2008). More recent studies have confirmed that the prevalence

of Toxocara in adults living in regions above 60 degree latitude is below 5%

(Messier et al., 2012). In Northern Saskatchewan, however, the preva-

lence of T. canis in humans was recently recorded at 13.4% (Schurer

et al., 2013).

Northern Canada is facing a disproportionate increase in temperature

changes and is therefore considered as a sentinel site for understanding

how climate change might affect parasitic disease transmission (Jenkins

et al., 2011). In that review, Jenkins and colleagues suggest that a combina-

tion of migrating animal populations, including arctic fox, combined with

increased survival of eggs over the winder period will result in a net increase

in transmission despite the potential for higher summer temperatures to

affect the eggs negatively. There are no published studies that have projected

how climate change may affect transmission and this issue remains to be

investigated further through a combination of epidemiological surveys

and modelling projects.

8.2 Bacterial
8.2.1 Leprosy
The cause of leprosy,Mycobacterium leprae, is another example of an organism

of public health importance for which there is a paucity of information avail-

able on its association with environmental factors (Franco-Paredes and

Rodriguez-Morales, 2016). Long considered to be transmitted directly

among individuals through nasal discharges and droplets, the role of the

wider environment, including vector-borne transmission, remains cryptic

(Franco-Paredes and Rodriguez-Morales, 2016). Some climate-sensitive

factors are considered below.
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8.2.1.1 Soil
M. leprae bacteria survive in soil under specific laboratory conditions

(Desikan and Sreevatsa, 1995) and have been found in soil in the natural

environment close to human habitation (Turankar et al., 2012). It is there-

fore important to consider how soil conditions may be affected under con-

ditions of a changing climate (see above).

8.2.1.2 Water
M. leprae have been detected in water samples, using PCR, in India

(Matsuoka et al., 1999). The same study also reported an association between

the presence of leprosy in water and the prevalence of leprosy in the

population.

At the time of writing, there were no original research articles available

on how climate change might affect future incidence of Leprosy.

9. PARASITES WITH INTERMEDIATE HOSTS

9.1 Trematodes
9.1.1 Schistosomes (S. mansoni, S. haematobium)
The breadth of research undertaken on each aspect of this lesser-neglected

NTD is sufficient to fill several books (Evans, 2015; Mahmoud, 2001; Secor

and Colley, 2004). Here, I focus on describing recent research relevant to

modelling decadal climate change.

The complex life cycles of schistosome species contain several climate-

sensitive stages (miracidia, sporocysts, cercaria and intermediate host snails).

Each of these components is affected temperature (reviewed by Kalinda

et al., 2017) and a wide range of other environmental and physiochemical

factors, depending on species, but which includes substrate type, flow veloc-

ity, water turbidity, metal content and chlorophyll content (Monde

et al., 2016).

An early attempt at modelling the future transmission of Schistosomiasis

in the African context used a deterministic model of the entire life cycle,

suggesting that higher temperatures (>30°C) could substantially reduce

both prevalence and intensity of transmission (Mangal et al., 2008). While

it is clear that the temperature and the state of the aquatic ecosystem are a

critical factor for snail and parasite development (Morley and Lewis,

2013), the question of whether climate change alone will have a noticeably

existential impact on the future transmission of schistosomiasis is still very

uncertain (McCreesh and Booth, 2013; Stensgaard et al., 2016).
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Pedersen et al. (2014) and Stensgaard et al. (2013) used an ecological

niche model to estimate potential changes to the macrodistribution of

two snail species (Biomphalaria pfeifferi and Biomphalaria sudanica) in the

African context. The results of their studies hinted at the both the underlying

complexity and uncertainty of this type of projection. Assuming all else

remains equal; Stensgaard et al. (2013) predicted that snail range of

B. pfeifferi could either contract by 43% by 2080 under the SRESA2 scenario

while the range of B. sudanica could increase by 14% under the same sce-

nario. Their conclusion, that climate change is unlikely to have a uniform

and unilateral effect, was borne out in a later study of S. mansoni in East

Africa (McCreesh et al., 2015). Functional relationships drawn from the

literature on B. pfeifferi were first used to model how a long-term trend

towards warmer water may affect snail population biology (McCreesh

and Booth, 2014). Virtual miracidia were added into the model, with the

output being virtual cercariae. Using this output as a measure of ‘infection

risk’, combined with downscaled climate change projections for specific

RCP scenarios allowed for mapping future transmission potential up to

2050 in Tanzania, Kenya, Uganda, Rwanda, Burundi and Zambia

(McCreesh et al., 2015). Owing to the nature of the functional relationships

contained within the model it was observed that some areas are likely to

become unsuitable either for the parasite or the host, whereas other areas

would become more suitable. A later collaboration that combined the

ecological niche and functional trait modelling reached a similar conclusion

(Stensgaard et al., 2016). Fig. 7 summarises the steps taken in this project,

which represented an application of a generalisable approach to assessing

the effect climate change through considering how abiotic changes may

affect functional traits of both intermediate hosts and parasites (Cizauskas

et al., 2017).

9.1.2 Schistosoma japonicum
Early models of the potential for transmission of S. japonicum transmission to

be altered by climate change focused on how projected changes in average

temperature with China may affect the potential transmission area (e.g. Yang

et al., 2005). A later effort extended this approach to include statistical

modelling of the relationship between temperature and snail natural history

to produce risk maps that illustrated the potential range shift in 2030 and

2050 (Zhou et al., 2008). An assessment by Moore et al. (2012) of the

degree-day modelling approach used by Zhou et al. (2008)—as well as other

publications (see table 2 Moore et al., 2012) cautioned against the use of the

71Climate Change and NTDs



use of degree-day models due to their inability to deal effectively with para-

metric uncertainty.

9.2 Food-Borne Trematodes
This is an important group of zoonotic trematodes transmitted to humans via

poorly processed food, particularly fish, crustaceans and plants. Included in

this group is Clonorchiasis, Fascioliasis, Opisthorchiasis and Paragonimiasis

(Keiser and Utzinger, 2009). The epidemiology, pathology and control of
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Fig. 7 Illustration of the steps taken to map future transmission potential of S. mansoni in
East Africa, combining functional trait knowledge on the relationship between temper-
ature and Biomphalaria fecundity with dynamic agent-based models, downscaled cli-
mate projections and ecological niche modelling. The results of combining the
outputs of these models and experiments resulted in a high-resolution hazard map
which was then used to underpin a risk map that incorporated a vulnerability layer as
observable in the Healthy Futures Atlas. Elements of the figure reproduced from
McCreesh, N., Booth, M., 2014. The effect of increasing water temperatures on Schistosoma
mansoni transmission and Biomphalaria pfeifferi population dynamics: an agent-based
modelling study. PLoS ONE 9 (7). doi: 10.1371/journal.pone.0101462; Stensgaard, A.-S.,
et al., 2016. Combining process-based and correlative models improves predictions of
climate change effects on Schistosoma mansoni transmission in eastern Africa. Geospatial
Health 11 (1 Suppl), 406. doi: 10.4081/gh.2016.406.
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the parasites causing the first three diseases in the above list have been

reviewed, in the SE Asia context, elsewhere (Sripa et al., 2010). For Para-

gonimiasis, a recent comprehensive review is available (Blair, 2014), and

aspects of the evolution and phylogeography of all four genera have also

been reviewed (Attwood, 2010). At the time of writing, there was little pub-

lished literature regarding decadal climate change and transmission of these

infections. The discussion below summarises what is known about the rela-

tionship between environmental change and the climate-sensitive stages of

the life cycles.

9.2.1 Clonorchiasis and Opisthorchiasis
The life cycles of Clonorchis sinensis (endemic in Asia), Opisthorchis viverrini

(endemic in SE Asia) and Opisthorchis felineus (endemic in Europe and Asia)

involve open defaecation by a definitive host into fresh water, typically small

ponds, containing vegetation and compatible snail hosts. There are numer-

ous species of snail that support the infections (Tang et al., 2016), each of

which may be restricted to specific habitats and possess its own set of attri-

butes affected by abiotic and biotic characteristic properties of the water body

(Petney et al., 2012).Water temperature is crucial in terms of snail population

size and dynamics—e.g., Parafossarulus manchouricus abundance–temperature

relationship follows a convex curve, with the highest seasonal abundance

associated with temperatures of between 24 and 26°C, and lowest abundance
below 10–13°C (Chung et al., 1980).

The second intermediate host is a freshwater (often a cyprinid) fish or

crustacean that predates on the snail host. Again, there are multiple species

of fish or crustacean involved, depending on location (Tang et al., 2016).

The natural history of cyprinid fish, which are poikilothermic, is also

affected by water temperature and hence likely to be affected by climate

change (Ficke et al., 2007). Research into the effects of climate-induced

changes suggest that population turnover (Buisson et al., 2008), recruitment

into rivers (Nunn et al., 2007), species range (Comte et al., 2013), body size

and growth rates (Ruiz-Navarro et al., 2016) are all likely to be affected

depending on species and habitats (Buisson and Grenouillet, 2009).

The natural histories of both miracidia, cercariae and metacercariae of

Clonorchis andOpisthoricis, and their relationship with snail and fish interme-

diate hosts, are acutely affected by the abiotic properties of the water bodies

they inhabit. For example, field and experimental observations of the

Opisthorchis intermediate host, Bithynia siamensis goniomphalos, indicate that

infection rate by miracidia of O. viverrini is minimised at water temperature
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of 16°C, maximised at 30–34°C, declines rapidly thereafter, and is more

common in relatively small snails (Echaubard et al., 2017; Prasopdee

et al., 2015). The convex nature of infectivity and survival of both snails

and free-living parasites indicates that water bodies which exceed the

upper temperature threshold over the coming years may become unsuitable

habitats, whereas those water bodies that move from below 16°C towards

20°C or higher may become more suitable.

Evidence of the downstream effect of warmer waters on transmission of

the infections to humans is very limited, but one published study on

Clonorchis from Guangzou city, China suggests a link (Li et al., 2014).

In that study, annual average 1°C increase was associated with an average

1.18% rise in monthly incidence from 2006 to 2012, a 1 mm change in rain-

fall was associated with 0.03% increase in incidence, and 1% rise in RH was

associated with a 1.5% decrease in incidence. In contrast, projected impacts

over several decades have been explored for Opisthorchis, specifically in

Thailand (Suwannatrai et al., 2017), where Maxent was used to model a

potential future hazard distribution, using IPPC A2 scenarios to 2070.

The conclusion from that study was that northern regions may become

unsuitable for transmission.

9.2.1.1 Fascioliasis
Fasciola hepatica is an important food-borne parasite with a global distribu-

tion (Mas-Coma et al., 2009). Although mainly an infection among live-

stock, human cases are regularly reported (World Health Organisation.

Foodborne Disease Burden Epidemiology Reference Group, 2015). Risk

factors include a list of anthropogenic behaviours that lead to ingestion of

contaminated vegetation (Ashrafi et al., 2014).

The parasite life cycle is similar to other food-borne trematodes and

schistosoma with one main difference. The snail intermediate hosts are

air-breathing freshwatermollusks of the ‘fossarine’ group (familyLymnaeidae),

most importantly Galba (formerly Lymnaea) trunculata, from which metacer-

caria emerge onto vegetation. This vegetation is ingested by the definitive

host, which may include humans. The snails typically inhabit slow-moving

or standing water bodies, often within marshy or muddy habitats, where

they feed and lay eggs. They can aestivate by burying into the substrate to

survive drought conditions, with the period of aestivation decreasing with

altitude (Goumghar et al., 2001).

The global spread of the infection has been attributed to anthropocentric

activities, related to domestication and transport of livestock, stretching back
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thousands of years (Mas-Coma et al., 2009). Habitats with temperatures as

low as 10°C have been recorded as suitable for several intermediate host

species including Fossaria bulimoides (Cruz-Mendoza et al., 2004) and

G. trunculata (Rapsch et al., 2008). Adaptations of snails and parasite to con-

ditions associated with high altitude (�4000m) have also been observed

(Mas-Coma et al., 2001). Temperature above 30°C is associated with rapid

reduction in egg survival, with the ‘lethal’ temperature depending on species

(Harris and Charleston, 1977).

Miracidial development and hatching have been observed to depend on

temperature of the water body, with early studies indicating that no devel-

opment was possible at temperatures lower than 9°C or above 30°C
(Kendall). Cercarial shedding is also temperature dependent, with minimal

shedding at 9°C (Kendall and McCullough, 1951). There is some disagree-

ment over the optimal temperature. The studies of Kendall andMcCullough

(1951) suggested ongoing shedding at 26°C. Subsequent observations have
suggested not just that 20°C may be optimal, but also that the magnitude of

the shedding may depend on susceptibility of the snail species and the degree

of diurnal variation in temperature (Rondelaud et al., 2013).

As a zoonotic infection affecting livestock of economic importance,

Fasciola has received relatively more attention, in terms of environmental

change research, than the other food-borne infections. It is known, for

example, that contemporary weather patterns shape exposure among cattle

in the European context, with the number of relatively warm days per

annum, combined with relatively high average levels of within-farm precip-

itation (excluding within-year spikes) are positively associated with milk-

seropositivity (Charlier et al., 2016; Munita et al., 2016). Within-country

spatial clustering is thereby associated with spatial variation in these meteo-

rological factors (Selemetas and de Waal, 2015). Enhanced vegetation

(assessed remotely) has also been associated with increased risk of transmis-

sion in areas as regionally distant as Colombia (Valencia-López et al., 2012)

and Pakistan (Afshan et al., 2014).

Soil type, slope and treatment, along with the characteristics of the

underlying water budget contribute significantly to determining spatial

distribution. In the tropical US context, hydric soils with poor drainage

(Malone et al., 1992) or chenier soil with accumulated water that

seeps out to provide a habitat for snails (Zukowski et al., 1993) is positively

associated with exposure. In the tropical African context, arid and/or

acidic soils (<5.5 pH) are negatively associated with endemicity (Malone

et al., 1998).
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Exposure within human communities is also associated with seasonal

variation, as observed in Pakistan (Qureshi et al., 2016). Historic climate data

have been used to map risk of human fascioliasis in Iran (Halimi et al., 2015),

with conclusions on the role of rainfall, temperature and vegetation that

align with studies of the parasite in animal populations.

Thewide window of available temperatures and habitat characteristics, as

well as anthropocentric activities such as global travelling, highlights the

potential for continued transmission of Fasciola infections under many

climate change scenarios. At the time of writing, the majority of literature

related to environmental change consisted of articles as described earlier,

mapping spatial heterogeneity in exposure or levels of infection through

analysis of environmental covariates. In terms of future projections, only a

few articles have been published. These include modelling snail habitat

suitability in Zimbabwe up to 2099 using the SRES A1B scenario

(Pedersen et al., 2014); modelling decadal exposure up to 2089 in the United

Kingdom based on the SRES 1B scenario (Fox et al., 2011) and modelling

infection risk in New Zealand up to 2090 using SRES A1B, A2 and B1

scenarios (Haydock et al., 2016).

9.2.1.2 Paragonimus
This food-borne parasite consists of over 40 species that infect a wide range

of intermediate and definitive hosts (Blair et al., 1999). Nine species or

species–complexes are known to affect humans (Blair, 2014; Chai, 2013).

The main focus of infection with species of the Paragonimus westermani

complex is SE Asia, where multiple individual species within the complex

infect intermediate hosts with low specificity (Doanh et al., 2013). Other

foci, consisting of highly distinct parasite species are located in West Africa

(Paragonimus africanus and Paragonimus uterobilateralis) and (sub)-tropical

parts of North, Central and South America (Paragonimus mexicanus and

Paragonimus kellicotti).

In common with the other food-borne trematodes, the climate-sensitive

stages of the Paragonimus life cycle are those contained in the water phase.

The first intermediate hosts are freshwater snails from the super families

Rissoidea and Cerithioidea, but the full range is still unknown (Attwood,

2010). The second intermediate hosts are decapod crustaceans consisting

drawn from several genera, depending on location and including

Cambraoides crayfish (Kim et al., 2009), the freshwater crabs Liberonautes

and Sudanonautes (Aka et al., 2008) and Tehuana (Vargas-Arzola et al.,

2014). This is not an exhaustive list, as many other genera have been
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identified specific to regions including Ecuador (Calvopiña et al., 2014) and

the United States (Fischer et al., 2011). The list of susceptible hosts in these

and other papers point to the extreme generalisation of this parasite, and thus

indicate a major challenge to modelling future trends in transmission.

In the absence of available literature on climate change and para-

gonimiasis per se, it is nonetheless plausible to suggest that the contempo-

raneous distribution of Paragonimus species is shaped by a wide range of

factors as described in previous sections. Future transmission of the infection

may also be affected by climate-related changes to local ecosystems, food

webs, zoonotic reservoirs, farming practices, consumption patterns, human

behaviours related to sanitation and translocation of humans, intermediate

and zoonotic hosts. Long-distance translocation may have occurred to bring

the parasite into South Africa, for example (Appleton, 2014).

9.3 Nematodes
9.3.1 Guinea Worm
Although scheduled for eradication due to the low number of recent cases,

guinea worm may reemerge as a public health problem in the future due to

the recent observations of infections in various animal hosts including dogs,

fish and frogs (Eberhard et al., 2016; Ruiz-Tiben et al., 2014). The climate-

sensitive stages of Dracuncula are the L1 larvae released by the adult female

worm, along with the L2 and L3 larvae contained within the poikilothermic

copepods of the Metacyclops, Mesocylops and Thermocylops genera that act as

the intermediate host.

There were no published papers available on climate change and guinea

worm at the time of writing. Historically, guinea worm infections are

known to occur seasonally (Bloch and Simonsen, 1998), with peak infection

tied to rainy seasons in countries at the southern fringe of the Sahara desert,

and tied to dry seasons in those countries close to the Gulf of Guinea

(reviewed by Ruiz-Tiben and Hopkins, 2006). In both regions, this has

been attributed to the presence of stagnant freshwater used for drinking pur-

poses rather than the population biology of the copepods or changes in

ambient water temperature.

The thermal tolerance of warm-water copepods was established several

decades ago. For example, the eggs of Thermocyclops spp. develop at a linear

rate from 15 to 30°C, after which point there is a rapid downturn until 40°C,
whereupon development ceases (Burgis, 1970). Studies on the phenology of

warm-water copepods suggest that increased temperatures can lead to

increased fecundity and thereby increase population size at specific times
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of year (Gerten and Adrian, 2002; Wagner and Adrian, 2011). Concern has

been raised that the frequency of diurnal changes in the physiochemical

environment could overwhelm the adaptability of copepods (Alm�en
et al., 2014), and freshwater scarcity (see above) may also play a role in deter-

mining future abundance.

Given that cases among humans are an historically low point, but that

copepod populations may be put under stress by environmental change, it

is challenging to speculate how climate change will affect future Dracuncula

transmission. History tells us that reduced efforts at controlling parasites can

cause increases in transmission of parasites previously controlled (Ekwanzala

et al., 1996). Calls have been made for continued financing into field-based

research (Molyneux and Sankara, 2017). This will need to be accompanied

by continued awareness of the potential dangers of drinking copepod-

infested water to ensure sustainable interruption of the parasite life cycle.

9.4 Cestodes
9.4.1 Echinococcosis
Key to understanding how climate change might affect the distribution of

Echinococcus spp. in the future is a detailed understanding of all climate-

sensitive stages of the life cycle. The life cycle of Echinococcus spp. involves

homeotherm mammals (including humans). Only one life stage—the eggs

deposited with faecal matter from the definitive host—is essentially poikilo-

thermic. Typically, these eggs are deposited onto soil through open defeca-

tion of dogs and other canidae. Eggs are therefore most likely to be directly

affected by abiotic or biotic factors that affect the soil.

Echinococcus multilocularis is confined to northern latitudes and its eggs can

survive freezing temperatures, with an optimal temperature range of 0–10°C
and are viable only for a few hours at temperatures>25°C (Veit et al., 1995).

Echinococcus granulosus is responsible for the majority of morbidity in humans

and has a wider distribution including tropical and temperate regions

(McManus et al., 2003). It is clear from this latter fact alone that the eggs

of E. granulosus must have historically adapted to a wide range of tempera-

tures above 0°C. This has been reported by a very small number of studies at

the time of writing. Wachira et al. (1991) tested the viability of E. granulosus

eggs under various conditions in a semiarid region of Kenya. After placing

eggs in suspension, samples were positioned on open ground, near a house or

near a water hole. Only the eggs near the water hole were observed to be

viable after 10 days, where the average temperature was approximately

29°C. Most recently, Thevenet et al. (2005) observed that eggs of the
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parasite kept outdoors on deposited stool samples from canines were viable

after 41 months exposure to the elements in an arid region of Pategonia.

During the exposure period, the eggs were subject to a temperature varia-

tion of �3 to +37°C and low rainfall (<300mm per annum). At the end of

the exposure period, the eggs were still viable in terms of producing cysts in

Texel ovines. Together, these studies, combined with a few earlier studies

cited byWachira et al. (1991), suggest that eggs ofE. granulosusmay be viable

when deposited onto the ground at temperatures not yet reached by more

temperate areas.

At the time of writing, there have been no published studies in terms of

modelling the potential future transmission of Echinococcus spp. under spe-

cific climate change scenarios. Atkinson et al. (2013) offer a wide-ranging

narrative review of how environmental change, including climate change,

might affect future transmission. Much research has covered the myriad

environmental factors that shape the contemporary geographic distribution

(Atkinson et al., 2013). It is also made clear in that review that there is a lack

of evidence on the role of anthropogenic factors.

Anthropogenic changes that are likely to affect the contemporary trans-

mission of Echinococcus are those which modify the habitat, range and/or

behaviour of predator and prey animals. Atkinson et al. (2013) review the

possibilities regarding urbanisation, deforestation and land use change.

The modifying effects of climate change on anthropogenic influences

presents a further, as yet unexplored, challenge.

9.4.2 Taeniasis–Cysticercosis
Cysticercosis is a disease, mainly endemic in low-to-middle income coun-

tries (LMICs), which is considered to be responsible for approximately 30%

of all epilepsy cases in endemic countries (Ndimubanzi et al., 2010). The

primary risk factor is consumption of pigs infected by Taenia solium. The

WHO updated its map of T. solium distribution in 2015 (Donadeu et al.,

2016), highlighting how the import of infected pigs leads to cases in coun-

tries without comprehensive screening protocols.

The life cycle of Taenia parasites includes a climate-sensitive stage and its

future transmission potential may therefore depend partly on how soil phases

change in the future. At the time of writing, there have been no papers

published that model future transmission scenarios. This review is therefore

restricted to reviewing existing literature that has explored how environ-

mental variables affect the survival and viability of the eggs shed by the

definitive hosts.
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In common with other parasites, the majority of work related to the

natural history of taenid eggs was comprehensively investigated several

decades ago (reviewed Lawson and Gemmell, 1983; see also Willis and

Herbert, 1984 regarding Taenia multiceps). The aim of these studies was to

understand the abiotic and biotic factors that affect the survival of eggs either

under in vitro or field conditions, covering a range of species including Tae-

nia pisiformis, Taenia ovis, Taenia hydatigena and T. multiceps. The in vitro

experiments examined the effects of varying temperature and/or humidity

or surface moisture on egg survival. Field experiments have focused more on

the distribution and survival of eggs (e.g. Wachira et al., 1991) and uptake of

eggs by animals under controlled conditions.

In terms of temperature, eggs have recorded to withstand freeing

conditions of up to �20°C without any effect on hatching (Willis and

Herbert, 1984), while surviving for just 4 days at 21°C (Gemmell, 1977)

and for just a few hours, if at all at 37°C (Coman, 1975; Gemmell,

1977). In terms of humidity and surface water, the evidence suggests that

conditions of low RH can dramatically affect the survival of eggs. Laws

(1968) reported that only T. hydatigena eggs could survive RH levels below

60%, while Gemmell (1977) observed that a lack of surface moisture reduced

hatching to almost 0% after 4 days, irrespective of species and storage

temperature. Similar observations were made by Sánchez Thevenet et al.

(2017) who again concluded from laboratory studies of T. hydatigena that

low RH values are inimical to eggs of this parasite. The inferences from

all these studies are that dryer environments cause higher rates of mortality,

possibly due to the desiccation of the keratin shell leading to shrinkage and

increased hydrostatic pressure on the embryo, leading to its demise

(Laws, 1968).

Risks to humans as a result of climate change are currently challenging to

estimate. There are two routes to infection—either the consumption of

infected pork or ingestion of eggs, e.g., by eating food stuffs fertilised with

contaminated faeces. Pigs can be treated andmeat can be screened to prevent

that particular route of infection (Gabriel et al., 2015), and there is no a priori

reason to expect that would be directly affected by a changing climate.

It is more likely that changing climate conditions will affect the ingestion

of eggs. Changes to the soil phase that supports the eggs may have localised

effects depending on a combination of soil temperature and soil moisture.

Given the evidence from the studies summarised earlier, it is possible only

to speculate that areas where a combination of increased humidity and only
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moderate increases in temperature may experience a greater percentage of

egg survival. This may translate into a localised hazard function for model-

ling purposes, but this function will need to be modified by other risk factors

associated with the vulnerability of associated human populations that may

or may not alter depending on which climate change scenario is realised.

Another factor that will need to be considered is the potential for insects

to distribute the eggs over extended distances through coming into contact

with contaminated faecal matter. It has been previously suggested that blow

flies could distribute eggs (Lawson and Gemmell, 1990) but this has not been

demonstrated other than experimentally with dead flies being ingested by

lambs (Lawson and Gemmell, 1990). More recently, Ammophorus rubripes,

a dung beetle, has been implemented as a potential carrier through exper-

iments that demonstrated carriage of viable eggs by the beetles for up to

24 days (Gomez-Puerta et al., 2014). A broad range of synergistic and com-

peting factors is likely to affect the ecology of any organism capable of dis-

persing eggs, leading perhaps to localised extinction (Brook et al., 2008),

among other effects related to anthropogenic disruption of established eco-

systems (Cable et al., 2017).

10. ZOONOTIC VIRUSES

10.1 Coronoviruses
Middle East respiratory syndrome coronavirus (MERS-CoV) and severe

acute respiratory syndrome (SARS) are two coronaviruses on the list of

WHO priority diseases due to the lack of preparedness for future outbreaks.

Bats are the major suspects in terms of zoonotic origin of both SARS and

MERS-CoV (Anthony et al., 2017; Drexler et al., 2014).

Person-to-person transmission of aerosolised virus is the predominant

risk factor for infection post-spillover. As with all other respiratory viruses,

a range of environmental factors facilitate or inhibit the transmission, includ-

ing temperature, precipitation, RH and airflow (reviewed by Pica and

Bouvier, 2012). Relatively few investigations have been undertaken on

SARS orMERS-CoV specifically. From the available literature, it is possible

to deduce that both SARS and MERS-CoV persistence in the environment

decreases at temperatures>20°C, at a rate dependent on a convex humidity–
temperature interaction (Casanova et al., 2010; Chan et al., 2011; van

Doremalen et al., 2013).
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At the time of writing, there were no original research papers available

on the potential for climate change to affect transmission. Given the earlier

observations, it may be possible to speculate that both MERS-CoV and

SARS are likely to be less common in tropical and tropical areas in the

future.

10.2 Henipavirus
10.2.1 Nipah and Hendra
Nipah henipavirus is a recently discovered member of the Henipavirus genus

and is closely related to Hendra henipavirus (Ksiazek et al., 2011). Both

Hendra and Nipah are on theWHO list of priority diseases, are highly path-

ogenic, affect populations in southeast Asia and are zoonotic. Fruit bats have

been confirmed as the main zoonotic hosts of Nipah (Yob et al., 2001) and

Hendra (Halpin et al., 2000). Food-borne transmission is possible given

observations of cases who reported drinking palm sap from containers pre-

viously accessed by fruit bats in Bangladesh (Islam et al., 2016; Luby

et al., 2006).

At the time of writing, there were no original papers in the literature on

the potential for decadal climate change to affect Henipavirus transmission.

Some environmental cues are nonetheless available. Under experimental

conditions, both Nipah and Hendra can tolerate conditions with pH of

3–4 to 11, can survive more than 4 days in bat urine kept at 22°C, but
are rapidly inactivated under conditions of desiccation (Fogarty et al., 2008).

In epidemiological studies, seasonality of Nipah spillover into human

populations has been observed in Bangladesh (Luby et al., 2009) outside

the typhoon season. In terms of understanding which environmental factors

are associated with Nipah spillover risk, Walsh (2015) identified bat density

and a derived variable termed ‘human footprint’ as key factors, but excluded

vegetation cover and pig density. Seasonality has also been observed in terms

of viral antibody dynamics in bats (Baker et al., 2014). Taken together, these

observations hint that the risk of spillover events is determined by an inter-

acting combination of bioclimatic factors and bat ecology.

10.3 Filoviruses
10.3.1 Ebola and Marburg
The filoviruses (Ebola and Marburg) are highly pathogenic NTDs (MacNeil

andRollin, 2012) that affect human populations in outbreaks associated with

a spillover event from zoonotic hosts. Bats are speculated to be primarily

responsible for these spillover events, where the infections persist, possibly

due to biannual birth pulses (Hayman, 2014). Epidemiological evidence of
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spillover phenomenon comes from observations of seasonal variation in the

prevalence of Marburg virus coinciding with the onset of outbreaks

(Amman et al., 2012). The majority of human infection after the spillover

is through direct contact with cases.

At the time of writing, there were no original research papers available

that have modelled future climate change-related projections of either of

these filoviruses. All attempts at modelling the risk of infection has instead

focused on the near term. Bats have received some attention in the literature

in relation to both Ebola and Marburg, particularly in terms of modelling

interactions between bat ecology and environmental factors. Taken

together, the current models suggest that infected bats migrate to resource

rich areas (Buceta and Johnson, 2017) but are limited in their geographic

distribution by a combination of temperature, evapotranspiration and eleva-

tion (Pigott et al., 2014, 2015). Areas that combine relatively high human

population density with high vegetation coverage are at relatively high risk

of outbreak (Walsh and Haseeb, 2015), presumably as this increases the

rate of contact between bats and humans. It remains to be seen whether

climate change will significantly alter the interactions between these risk

factors.

10.4 Arenaviruses
10.4.1 Lassa Fever
Lassa mammarenavirus (the aetiological agent of Lassa Fever) is a member of

the Arenaviridae family of viruses (Yun andWalker, 2012). Up to 37 million

people, mainly living in West Africa, may currently live in areas where the

environment is suitable to support the main zoonotic host of Lassa Fever,

the Natal multimammate rat, Mastomys natalensis (Fichet-Calvet et al.,

2009; Mylne et al., 2015). Human-to-human transmission is considered

to be account for between 5% and 20% of all cases, possibly due to

‘super-spreaders’ (Lo Iacono et al., 2015). Transmission occurs when

humans come into close contact with the mouse specifically through inges-

tion or inhalation of mouse urine, faeces or blood. Risk factors include liv-

ing in close proximity to the mice, butchering and consumption (Bonwitt

et al., 2016, 2017).

As with other zoonotic NTDs, a consideration of the life history traits

and population biology of the zoonotic host is essential to understanding

how climate change may affect future transmission patterns. M. natalensis

is an endotherm and as such its gestation period is not directly affected by

external temperatures. In contrast, the population abundance of this organ-

ism is characterised by clearly definable and high-amplitude fluctuations.
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Published field studies have consistently observed that these fluctuations are

predictably associated with seasonal rainfall patterns (Coetzee, 1975;

Makundi et al., 2007; Sluydts et al., 2007; Stenseth et al., 1997). Typically,

M. natalensis breed during rainy seasons and are most abundant in the pro-

ceeding dry season (Christensen, 1993). Specific rainfall events, including

so-called ‘short rains’ have been associated with rapid growth in population,

termed outbreaks (Mwanjabe et al., 2002). This phenomenon is the result of

more rapid development of the pups (Leirs et al., 1990), a process triggered

by the rains and the consequential lifting of food restrictions (Christensen,

1993), and leads to both parents and their offspring breeding within rela-

tively short periods of time.

Although known as an opportunistic species able to occupy a wide range

of habitats, several natural environment factors nonetheless limit the spatial

distribution ofM. natalensis. The type of soil appears important, with higher

abundance observed in regions with high vegetation cover and sandy

(Massawe et al., 2005, 2008). Both these environmental factors can be nat-

urally and anthropogenically determined, thus farming practice and land use

are also likely to affect the population biology of the rodent (Massawe

et al., 2007).

Survival of the virus in the environment is also key to completing the

transmission cycle. Once an infected mouse has urinated or defecated, there

is a finite period over which the virus is viable. Laboratory investigations

indicate that aerosolised virus is inactivated within 60min at temperatures

>24°C (Stephenson et al., 1984) and that dark, dry conditions (Sagripanti

et al., 2010) are associated with rapid decay of the virus.

The potential effects of climate change on the transmission of Lassa

fever to humans have so far received limited attention in the literature.

Given the well-known propensity of the mouse to undergo population

outbreaks, historic attention has been given to either mapping contempo-

rary risk (Fichet-Calvet et al., 2009) or forecasting over short periods (Leirs

et al., 1996). One study has focused on the issue of estimating the effect of

global change, including climate change (Redding et al., 2016). In that

particular study, the authors created a spatially stratified mechanistic model

for West Africa and modelled the effects of three climate change scenarios

drawn from the HADGem3 AOGCM. The results of this simulation sug-

gest that more extreme scenarios of both temperature increase and land-

use change are likely to increase the rate of spillover events from animals to

humans.
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10.5 Lyssavirus
10.5.1 Rabies
Dog-transmitted rabies are present in 150 countries including all of Africa,

parts of Latin America and all of Asia (Hampson et al., 2015). As a vaccine

preventable, zoonotic disease, most research is focused on contemporary

issues related to these two domains of enquiry. Efforts to understand the

environmental component of transmission are geared towards operational

aspects of vaccine delivery, e.g., in relation to landscape features (Russell

et al., 2006), the delivery of vaccines to wildlife (Rupprecht et al., 2004).

There is little attention in the literature on how environmental change

(including climate change) might affect transmission decades in to the future.

To date, the focus on climate change and rabies has been confined to arctic

areas (Huettmann et al., 2017; Kim et al., 2014).

11. VECTOR-BORNE INFECTIONS

In contrast to direct life cycle infections, there has been more attention

given to the vector-borne diseases (e.g. Parham et al., 2015; Rogers and

Randolph, 2006). This reflects both the larger number of actors working

in the field of vector-borne disease, and a relatively early realisation that cli-

mate can have a profound impact on the distribution of vector species,

particularly mosquitoes.

11.1 Helminths
11.1.1 Lymphatic Filariasis
W. bancrofti, the parasite that causes LF, is transmitted by mosquitoes of the

Anopheles, Culex and Aedes genera. The potential effects of climate change

on the transmission of this infection (assuming all else remains equal) there-

fore depends primarily on how the vectors respond to the biotic and abiotic

shifts associated with changing climates. See sections earlier for more infor-

mation on each of these species.

The potential impact of climate change on the parasite itself has not been

comprehensively studied. There is some evidence that ambient temperature

can affect the density of the symbiotic Wolbachia density (Mouton et al.,

2007), particularly in terms of the interaction between host genotype and

Wolbachia strain. This may reflect local adaptability to changing tempera-

tures over short timescales. A less direct effect may be possible through
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competition for resources as the availability of food changes over a longer

period of time (Ross et al., 2016), with evidence that certain Wolbachia

strains (wMel, wMelPop and wAlbB) can reduce the survival times of Aedes

larvae under starvation conditions. In the context of usingWolbachia to con-

trol populations of Aedes mosquitoes, high temperatures (e.g. 30–40°C over

several days) have been observed to reduce bacterial levels, at least in the

short term (Ulrich et al., 2016). Again, this points to adaptability but tells

us little about how a sustained pressure will shift the host–symbiont relation-

ship. Such information may emerge from longer-term studies over multiple

generations of vector kept at constantly higher temperatures.

11.1.2 Onchocerciasis
Onchocerca is transmitted by the blackfly Simulium damnosum complex and is

therefore a parasite with a life cycle that is sensitive to climate change.

Reviews of blackfly ecology and the relation between vector and parasite

are available in specific contexts (e.g. see Cheke et al., 2015 for a modelling

perspective; Takaoka et al., 1982 for a review specific to Guatemala). Here

I summarise work that has been conducted on the potential impact of

climate change in particular.

The fact that over 60 sibling species or cytoforms have been identified

(Adler et al., 2010), each with different life history parameters, makes any

attempt at projecting the effects of climate change highly challenging.

Nonetheless it has been possible, as with other NTDs, to estimate how

changing temperatures can affect the development of each stage of the vec-

tor, the development ofOnchocercawithin the fly, fly fecundity and the mor-

tality rate of the fly (Cheke et al., 2015; Takaoka et al., 1982). Unlike some

other vector species, there appears to be no threshold temperature (within

the range 15–32°C) at which point either fly mortality increases or the rate

of development of the parasite decreases (Cheke et al., 2015). Fluctuations in

daily temperatures may affect the overall development time, corresponding

to seasonal fluctuations in fly abundance (Zarroug et al., 2016).

Importantly, temperature is not the only driver of the ecology of

Simulium. A crucial feedback mechanism may lie in the phenomenon of

aggregated oviposition, which is the process by which gravid Simulium

females select existing egg masses to lay their eggs upon (McCall et al.,

1994). The stabilising effect on the population of the vector possibly comes

from a higher rate of egg mortality with increasing egg mass (Kyorku and

Raybould, 1987). When incorporated into a mathematical model, this
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feedback produced a sharply convex curve when plotting temperature

against the abundance of both parous and nulliparous flies, peaking at

29°C (Cheke et al., 2015).

At the time of writing, there were no original research publications avail-

able that considered the potential for long-term climate change to influence

future transmission of this NTD.

11.2 Viruses
11.2.1 Dengue
Of all the NTDs, Dengue infections have been considered more often in

terms of climate than all other infections, with over 200 publications avail-

able at the time of writing. A recent review on the subject by Ebi andNealon

(2016) revealed that most of this literature is concerned with identifying risk

factors for contemporary transmission, with only a handful of studies

devoted specifically to estimating the effects of decadal-scale climate change

on Dengue transmission. These studies have employed a range of modelling

techniques (reviewed by Messina et al., 2015), with varying results in terms

of where in the world Dengue infections are likely or not to be transmitted

under particular scenarios. Messina et al. (2015) attempted to unify the field

by writing a statistical modelling framework for future projections that relies

on capturing spatially explicit information at high spatial resolution to map

the contemporary distribution before replacing the existing values of

covariates (e.g. temperature, precipitation) with projected values based on

different RCPs.

Most of the existing models project that Dengue is likely to increase its

range in the coming decades as global temperatures rise. Where they differ

is the amount of uncertainty in their outputs (Messina et al., 2015). Neither

the individual projects nor any unifying frameworks consider the possibil-

ity that selection pressures acting on the Aedes vector or the dengue virus

itself could affect future transmission. General evolutionary features of the

dengue virus in relation to climate change and urban vs sylvatic cycles of

the Aedes mosquitoes are reviewed elsewhere (Tabachnick, 2016), with

the conclusion that past evidence of evolution warns us to expect future

adaptation.

Studies of how temperature change affects host–virus interactions

are few in number, with most evidence emerging in the context of inves-

tigating how Wolbachia bacteria may be used to control populations of
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dengue-transmitting mosquitoes. In that context, ambient temperature

has been observed to affect DENV infection rate in A. aegypti mosquitoes

(Sgrò et al., 2016).

11.2.2 Yellow Fever
YFV is a member of the Flaviviridae family, closely related to Dengue and

also transmitted by Aedesmosquitoes. It is predominantly observed in Africa

and South America. Unlike other most other VBDs, yellow fever has been

historically partially controlled through successful vaccination campaigns

(Rogers et al., 2006), combined with visa restrictions on travellers who have

not been vaccinated. Control efforts have not been entirely successful, with

recent estimates putting the death toll at approximately 78,000 in Africa dur-

ing 2013 alone (Garske et al., 2014).

Outbreaks of yellow fever have highlighted a number of issues, predom-

inantly related to lack of vaccination campaigns in East and Central Africa,

and large-scale urbanisation (Kraemer et al., 2017). One expressed fear is that

this outbreak will facilitate world-wide distribution of the virus due to

the establishment of direct air travel routes from east Africa into areas

with susceptible mosquito populations (Wasserman et al., 2016). Notable

in this regard is the recent observation that Australian strains of

A. aegypti are susceptible to YFV infection (Higgs et al., 2011) that Euro-

pean populations of A. albopictus can carry YFV (Amraoui et al., 2016),

and that either A. albopictus or A. aegypti is present in numerous US states

(Kraemer et al., 2015b).

The reasons for the absence of YFV in SE Asia are unknown. Hypotheses

have been established that include a lack of carrying capacity among Asian

strains of Aedes, an historic lack of travel from endemic areas to Asia, cross-

immunity related to Dengue infection, a lack of a sylvatic cycle in Asia and

the lack of a slave trade in Asia (Cathey and Marr, 2014; Rogers et al., 2006;

Wasserman et al., 2016). Given uncertainty about current reasons for lack of

transmission, it is even more uncertain how climate change might affect

future transmission of YVF in Asia. Aedes mosquitoes are susceptible to

selection pressures as a result of climate change (see above), and may there-

fore disseminate due to certain environments becoming more suitable. The

establishment of susceptibleAedes from Australia into parts of SE Asia where

the environment has become more suitable is possible through international

trade (Benedict et al., 2007).
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The same hypothesis can be applied to other areas where the environ-

ment may become suitable for species or strains of Aedes that are capable

of carrying YFV, contemporaneously with the transport of the virus through

globalised air travel of people and cargo. For example, as the tropics expand

(see above), it may be expected that some areas will becomemore humid and

vegetative cover may increase.

Like Dengue, YFV transmission may be affected by climate change due

to the fact that Aedes mosquitoes are the vectors. It cannot be assumed, how-

ever, that the direction of change will be the same for all these infections.

This is due to the fact that each virus has at least two types of transmission

cycle involving partly overlapping combinations of vectors or nonhuman

hosts (Rogers et al., 2006; Tabachnick, 2016). The sylvatic cycle is partic-

ularly important in YFV epidemiology, contrasting with the urban cycle

being predominant in terms of Dengue transmission. Thus, we have to

consider how the different cycles of each infection may be affected by global

environmental change.

Rogers et al. (2006) offer some insights into the differential effects of

environmental variation on transmission of Dengue and YFV. They

attempted to map the global risk of Dengue and YBF by considering which

environmental variables (including land surface temperature and normalised

difference vegetation index) are associated with known outbreaks. They

concluded that YFV transmission is predominantly associated with changes

in vegetation cover and humidity, whereas Dengue virus transmission is

more closely associated with changes in temperature. The maps produced

by Rogers et al. (2006) also suggest that environmental conditions are suit-

able for transmission for YFV in SE Asia despite an absence of the virus in

that region.

The effects of climate change on sylvatic cycles of either Dengue or

Yellow fever transmission have not been directly studied. Again, we must

infer the likelihood of climate having a significant impact based on what

is already known about the ecology and the natural history of the organisms

within each cycle. For example, toque macaques (Macaca sinica) are known

hosts of Dengue in Sri Lanka. The genusMacaca is also known for its plastic

characteristics in terms of its ability to adapt to changing food availability

caused by anthropogenic activities (Riley, 2007). The macaques adapt their

foraging strategy by moving beyond their home range if food becomes

scarce in one particular area. This range extension could occur as a result

of decreasing availability of natural foodstuffs in areas with altered patterns

89Climate Change and NTDs



of agriculture, forcing the monkeys into new areas (including urban settings)

where food is more available. Toque macaques are already found in urban

settings in Sri Lanka and are exploited in a number of ways—as pets, per-

former and for ritual activities (Radhakrishna et al., 2014).

11.2.3 Rift Valley Fever (RVF)
RVF is a vaccine preventable, epizootic and zoonotic disease that has a com-

plex natural history involving dozens of mosquito species as vectors (Pepin

et al., 2010). Aedes and Culex spp. have been implicated as the main vector

genera, with the former acting to transmit RVF in the interepidemic period

and the latter acting as an amplifier species during epidemics (Pepin

et al., 2010).

Epidemics of RVF are closely associated with excessive rainfall and

El Nino events (Linthicum et al., 1999). Additional large-scale determinants

include the presence of irrigation schemes, a high level of cultivation, higher

population density (Redding et al., 2017). At a local scale, a critical factor is

the nature of the local habitats—they must be suitable for supporting

mosquito populations. In this context, Sang et al. (2010) collected both

Aedes and Culex mosquitoes associated with RVF from a diverse range of

habitats in Garissa, Kenya, including human settlements near flooded

wetlands, mixed forest close to mangrove swamps and livestock holding

areas. Elsewhere, Culex tritaeniorhynchus—a vector of RVF in Saudi Arabia,

prefers wet, muddy substrates with a low total dissolved salts content (Sallam

et al., 2013).

Mathematical models of RVF typically focus on identifying factors that

can be used to forecast or mitigate the next epidemic (e.g. Leedale et al.,

2016; Mpeshe et al., 2011; Pedro et al., 2016). The repeated observation

of the importance of precipitation and water availability at specific locations,

combined with the differentiated natural history of the main vectors, means

that attempting to predict longer-term transmission of RVF under projected

climate change scenarios is inherently more challenging than for a disease

that has only one vector. Additional to the bioclimatic variable of impor-

tance are other factors related to the overall vulnerability of a population.

This aspect of disease has been explored by Taylor et al. (2016) who con-

structed an overall risk map of future RVF outbreaks in East Africa that

comprised the deterministic RVF model of Leedale et al. (2016), down-

scaled RCP projections and several expert-weighted indicators of social

vulnerability.
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Like all attempts to capture future transmission potential of an NTD, a

number of assumptions have to be made. In the case of Taylor et al.

(2016), one of the main assumptions was that the weight of certain social indi-

cators (e.g. the relative importance of the percentage of homes with a mobile

phone as an indicator of capacity to anticipate)would remain constant over the

coming decades. It was also assumed that neither the mosquito vectors nor the

virus itself will evolve as a result of selection pressures from climate change.

11.2.4 Crimean Congo Haemorrhagic Fever (CCHF)
A tick-borne infection, the CCHF virus is a member of the Bunyaviridae

family. Many tick species, especially members of theHylalomma genus, can

act as vectors. Both domestic animals and wildlife, particularly birds, can

act as reservoir populations.

The geographic distribution of infection is currently limited to the coun-

tries within Africa, theMiddle East, Southern-Eastern Europe and Southern

Asia (Dreshaj et al., 2016; Erg€on€ul, 2006). Not all populations within each

country affected by CCHF are at risk due to factors such as limited environ-

mental suitability for the ticks (Messina et al., 2015) or the restricted distri-

bution of zoonotic reservoirs including cattle and goats (Mostafavi et al.,

2013). Concerns have been raised that countries such as Turkey and those

in former Yugoslavia can act as portals for exporting cases into neighbouring

countries (Mahzounieh et al., 2012; Mild et al., 2010), due to the ability of

the vectors to be transported across boundaries.

Retrospective analyses of incidence data from human cases in Europe

have observed distinct seasonality and correlations with environmental fac-

tors including increased vegetation (grass, scrubland and herbaceous) cover,

medium–high level fragmentation of landscapes and warmer temperatures

(Vescio et al., 2012). Similar conclusions regarding high temperatures were

reached in a study of cases in Pakistan (Abbas et al., 2017).

Efforts to estimate the potential impact of climate change on future

transmission of CCHF have, to date, focused on the role of migratory birds

spreading the infection further into livestock of Europe (Gale et al., 2012).

In that context, it has been concluded that climate change will not have a

substantial impact by 2084.

The absence of a contribution from birds does not preclude other organ-

isms from affecting potential future transmission. The role of climate in

affecting tick ecology is likely to be highly significant given the sensitivity

of tick development and mortality to temperature, water availability and

vapour deficit (Estrada-Peña et al., 2015). In common with other infections
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included in this review, the relationship between success of the organism and

temperature is nonlinear due to the differential effects on development,

transovarial transmission, egg survival and mortality of the adult ticks

(Estrada-Peña et al., 2013).

11.2.5 Severe Fever With Thrombocytopenia Syndrome (SFTS)
SFTS is caused by a phlebovirus from the Bunyaviridae family, first reported

in 2009 in China (Yu et al., 2011). Haemaphysalis longicornis ticks are reser-

voir hosts of SFTS (Luo et al., 2015). Antibodies to the virus have been

detected in goats, cattle, dogs and chickens (Ding et al., 2014; Zhao

et al., 2012). The virus is on the list of WHO priority diseases. Elderly agri-

cultural workers inhabiting rural, shrub or forested areas are at the greatest

risk at specific times of year, according to epidemiological surveys (Liu

et al., 2014).

At the time of writing, there were no original research publications on

the potential for climate change to affect transmission in the future.

A current hypothesis is that ticks have historically distributed the infection

around China, South Korea and Japan by attachment to migrating birds

(Li et al., 2016; Zhang and Xu, 2016).

11.2.6 Zika Virus
Zika virus is an arbovirus of the Flaviviridae family, known to be transmitted

to humans through the bite of Aedes mosquitoes (Marchette et al., 1969).

Culex has been assessed as a vector but appears refractory (Huang et al.,

2016). Historically, the infection has been known to be endemic in parts

of Africa (particularly Nigeria) and parts of southeast Asia (including Borneo

and the Philippines). It was the emergence of Zika virus as a public health

problem in Latin America in 2015 that created disquiet among global public

health practitioners. The potential importance of the infectionwas recognised

byWHO, which declared a public health emergency in February 2016 as the

infection was observed to spread across 69 countries and territories, causing

thousands of cases of microcephaly (World Health Organisation, 2016b).

The designation was removed in November 2016, with WHO maintaining

that Zika was a high priority issue. At the time of writing, Zika virus was

placed on the list of priority diseases for research and development to prevent

epidemics.

It has been speculated that climate variation was partly responsible for the

rapid expansion of Zika during 2015 (Ali et al., 2017; Paz and Semenza,

2016). The reason for the rapid rise from 2015 onwards has been attributed
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to the El Nino event of 2015 (Caminade et al., 2017), due to the rise in tem-

peratures increasing the biting rate of the mosquito vectors.

A few modelling studies have been published to estimate the contempo-

rary risk of transmission of Zika virus, using ecological niche models to esti-

mate environmental suitability for the two main vectors, A. albopictus and

A. aegypti (Messina et al., 2016); or estimates of R0 for South America

(Perkins et al., 2016). At the time of writing, there were no published orig-

inal research studies on the potential for decadal changes in climate to affect

transmission of Zika virus on a local or global scale. As with other vector-

borne diseases, a key factor will be the effect of environmental change on the

ecology of the vectors (see above), modified by the vectoral capacity of the

two vectors (Gardner et al., 2017).

11.3 Bacteria
11.3.1 Trachoma
There have been several papers published that have considered whether or

not transmission of trachoma (Chlamydia trachomatis) is associated with abi-

otic factors including temperature, rainfall, RH and sunshine fraction

(reviewed byRamesh et al., 2013). Of the various factors considered, rainfall

and temperature (or altitude as a proxy for temperature) were most consis-

tently reported (in mainly cross-sectional studies) to be associated with

variation in the prevalence of active Trachoma. None of the eight papers

reviewed by Ramesh et al. (2013) modelled prospective transmission under

specific climate change scenarios. Clements et al. (2010) incorporated land

cover and land use in a geostatistical model with the conclusion that

transmission is higher in savannah and grassland compared to areas with

higher precipitation or high water-table (wetlands).

C. trachomatis can be transmitted directly from person to person or

through fomites. From a climate change perspective, it will be important

to identify all potential fomites and consider how they may be affected in

the future. Themost widely implicated are fabrics that can come into contact

with faces—towels, bedlinen, etc. But exudates from the eyes are often

wiped away with fingers which then come into contact with a wide range

of surfaces and objects touched by others. Some of these may be associated

with climate-sensitive factors in ways that are poorly understood.

For example, there is a known link between inclusion conjunctivitis and

genital chlamyidia (caused also by C. trachomatis), whereby contaminated

genital secretions are transferred by hand to the eye either through auto-

inoculation or from a partner. Contaminated fingers may or may not be
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washed depending on the availability of water. Water availability is a

climate-sensitive issue. In areas of water scarcity, hand washing is likely to

be less frequent. Blinding trachoma is a major problem in countries with

a high level of desertification, including Egypt and Chad. Although specu-

lative, it is possible that blinding trachoma in such areas is partly associated

with both the presence of genital chlamydia and lack of water for hand

washing.

An understanding of the ecology of the vector-borne route is of critical

importance when considering climate change.Musca sorbens, a major vector

of trachoma, lays its eggs on (preferably human) faeces (Emerson et al.,

2001). The larvae develop and emerge if conditions are suitable. Factors

affecting the probability of emergence include whether or not the environ-

ment around the faeces leads to crust formation (making it harder to

emerge), whether or not the faeces is removed by dung beetles, or whether

fly predators such as the dermapateran Labidura riparia or histerid beetles such

as Atholus rothkirchi Berkhardt, predate the larvae prior to emergence

(Toyama and Ikeda, 1981). When considering how climate change may

affect trachoma transmission it is therefore necessary to consider how dung

beetles, and arthropod fly predators will also be affected. Furthermore,

although M. sorbens appears to prefer human faeces, the fly will also settle

and lay eggs on dung of animals such as cows. So it also important to consider

how humans and animals will deposit faeces, and what happens to the faeces

once deposited, under conditions of a changing climate which may include

increasingly long periods of extreme conditions.

In a recent attempt to understand better how climate affects trachoma

transmission, Ramesh et al. (2013) reviewed studies of abiotic factors asso-

ciated withM. sorbens ecology. First implicated as a vector at the turn of the

21st century (Emerson et al., 2000), the fly is known to be affected by tem-

perature and humidity, but the limited number of relevant studies makes

modelling of the future transmission potential highly challenging (Ramesh

et al., 2013).

The lack of empirical data to support dynamic models is of particular

concern. The WHO strategy of combining mass antibiotic distribution,

facial cleanliness and environmental hygiene (known as SAFE), has been

scaled up in recent years, and blinding trachoma is one of the conditions

scheduled for global elimination by 2020. Given the paucity of information

on the epidemiology of blinding trachoma, its links to genital chlamydia,

water insecurities, land use change and other potential ecological variances,

it is still an uncertain future.
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11.3.2 Buruli Ulcer
Buruli ulcer is a debilitating and disfiguring infection of tropical regions cau-

sed byMycobacterium ulcerans. For a recent review of the pathology of Buruli

ulcer, see Yotsu et al. (2015). Within that review is a list of known or

suspected vectors of M. ulcerans that includes insects, mammals, fish and

shellfish. One of the key suspects is Naucoridae water bugs (Portaels et al.,

2008), which have been demonstrated to be able to transfer the bacterium

to mice through biting—the bacterium being located in the salivary glands

(Marsollier et al., 2002). There is also evidence that certain types of water

body (e.g. swamps) are associated with increased risk of exposure to the

bacterium, but no evidence that direct water contact is a risk factor

(Williamson et al., 2012). The reason for proximity to water being a risk

factor may be partly due to the presence of the water bugs. Linking the abun-

dance of water bugs to the risk of infection has proven challenging—various

studies have identified that carriage of the bacterium in in the mouthparts of

the water bugs changes at specific times of year (Marion et al., 2010), but also

that unidentified environmental factors can better explain spatiotemporal

variation in disease when compared to spatiotemporal variation of

M. ulcerans presence in the environment (Garchitorena et al., 2016).

Cases of the Buruli ulcer are predominantly found inWest Africa (Yotsu

et al., 2015), but also in other tropical countries including Japan (Yotsu et al.,

2012) and northern parts of Australia (Lavender et al., 2012). Anthropocen-

tric activities such as dam building have been implicated in terms of esta-

blishing new sites of infection (Marion et al., 2011). A recent case report

suggests the bacterium is also found in Honduras (Southern, 2016). Buruli

ulcer is classified as an emerging disease. The number of cases per country

fluctuates and there is no clear temporal trend over the previous decade

(Yotsu et al., 2015).

Evidence is emerging of landscape factors driving spatiotemporal varia-

tion in abundance of M. ulcerans cases—(Aboagye et al., 2017—presence of

bacterial DNA in the environment; Landier et al., 2014;Merritt et al., 2010).

At the time of writing, there were no original research articles on the poten-

tial for decadal climate change to affect transmission patterns.

11.4 Protozoa
11.4.1 Leishmania
For a review of papers published on this subject before 2008, see Ready

(2008).
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Several species of Phlebotomus and Lutzomyia sandflies, distributed and

segregated geographically across the tropics, have been identified as major

vectors of leishmanial parasites (Bates, 2007). Each species of sandfly

occupies a specific ecological niche and has a climate-sensitive life cycle

and population biology governed by a mixture of abiotic and biotic factors

acting independently and through interactions.While it has been recognised

since the turn of the century that climate change may have a significant

impact on the distribution of both the vectors and the disease (Peterson

and Shaw, 2003), the general direction of travel is less well specified due

to the fact that sandfly populations are affected on a microgeographical scale.

In the European context, it has been demonstrated that the density of

Phlebotomus ariasi at a particular sampling location is affected by both mini-

mum and maximum temperatures and to some extent by RH (Prudhomme

et al., 2015). South facing slopes, wall vegetation, soil type and neighbouring

land cover precipitation may also be important factors in determining local

abundance of this and other species (Ballart et al., 2014). Effects of individual

explanatory factors disaggregate among species of sandfly, indicating a need

to consider not just how climate change might affect individual ecological

drivers of abundance and site-specific vector density, but how individual

species of vector might be affected.

In the South American context, the relatively early models of Peterson

and Shaw (2003), using a combination of ecological niche modelling and a

general circulation model, predicted that by 2055 conditions in parts of

Brazil may become more favourable for transmission due largely to antici-

pated increases in temperature. A more refined conclusion was reached by

Carvalho et al. (2015), working with an ensemble of ecological nichemodels

and downscaled (344km2) general circulation models, projected to

2041–60. In that study, the simulations indicate that southern and eastern

parts of Brazil are likely to become more suitable in terms of the environ-

ment a simulation model of climate change scenarios on the distribution of

leishmanial vectors in the Colombian context, it was suggested that spatial

range could decrease under minimally disruptive scenarios through to

maximally disruptive scenarios (González et al., 2014).

11.4.2 Chagas Disease
The organism responsible for Chagas disease is Trypanasoma cruzi. This pro-

tozoan parasite is distributed widely across Latin America and is estimated to

infect 6–8million people of all ages (Rassi et al., 2010). The climate-sensitive
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stage of the parasite is in the insect vector, members of the Triatominae

subfamily.

The evolution, natural history and ecology of many Triatominae vectors

are described in detail elsewhere (Abad-Franch et al., 2015; Galvao and Justi,

2015; Teixeira et al., 2009). What has emerged from these and other studies

is that many Triaotominae species have evolved to be closely associated with

specific natural environments involving vertebrates such as birds, bats and

rodents (Galvao and Justi, 2015) from which they derive blood meals.

The large number of species means that there are a corresponding large

number of potential niches, each of whichmay respond differently to chang-

ing climates.

It is becoming increasingly apparent that these traditional niches are

being disturbed by anthropogenic changes affecting life history traits,

species composition in specific locations and habitat availability

(Gottdenker et al., 2012). Several studies have reported that normally

sylvatic species are increasingly invading urban domestic properties, for

example in Bolivia (Rojas-Cortez et al., 2016) and Brazil (Ribeiro et al.,

2015). Reasons for expansion of the vector range into human habitations

have speculated to include the increasing availability of electrical light. Many

insect species are attracted to the blue light fraction of electrical light and sev-

eral studies have observed clustering of Triatomine species around artificial

light sources, both in sylvatic (Castro et al., 2010) and urban (Pacheco-

Tucuch et al., 2012) settings. Economic activities associated with the

availability of electric light have also been suggested to underlie recent

epidemics of T. cruzi in new areas.

The anthropogenic influences above demonstrate that Triatominae

adapt rapidly to new opportunities and/or pressures. The potential for cli-

mate change to affect transmission patterns of T. cruzi over much longer

periods, through long-term effects on the soil and water phases, is less well

understood but has received some attention in the literature, specifically

through attempts to model the future suitability of habitats to support

vectors. Two separate studies have focused on howprojectedwarming scenar-

ios may affect the geographic distribution of Rhodnius prolixus and Triatoma

infestans in Venezuala andArgentina (Medone et al., 2015), and the geographic

distribution of Eratyrus mucronatus, Panstrongylus geniculatus, R. prolixus,

Rhodnius robustus and Triatoma maculata in Venezuala (Ceccarelli et al., 2015).

A common output of these studies was that the distribution of infection

is likely to change over the coming decades. Specifically, the distribu-

tion of infection is expected to reduce in the countries studied due to
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environments becoming unsuitable for the vectors. Neither of these studies

considered other changes to the niches that will be affected by climate

change. Palm trees, bromeliads, bird and rodent nests, hollow trees and

mammal burrows are among the sylvatic ecotopes occupied by the vectors

of T. cruzi. Climate change is likely to impact on each ecotype in ways that

we do not yet fully understand and which will be challenging to project

given the potential for multidimensional interactions among biotic and

abiotic domains.

11.4.3 Human African Trypanosomiasis (HAT)
The life cycle of HAT involves humans, wildlife and over 20 species of

Glossina, the Tsetse fly. The most climate-sensitive stage of the lifecycle is

in the flies. It is well established that Tsetse natural history dynamics are

shaped by environmental factors—as far back as 1940 studies were being

undertaken into the role of humidity on the population ofGlossina pallidipes,

Glossina austeni andGlossina brevipalpis in Kenya (Moggridge, 1949). Readers

are referred to Leak (1999) for a comprehensive overview of Tsetse biology

and ecology, and Rogers (2000) for an introduction into the use of satellite

imagery to map the distribution of Tsetse flies.

More recently, Pagabeleguem et al. (2016) have investigated the fecun-

dity and survival of three strains of G.p. gambiensis under conditions of

varying temperature at constant RH (25–35°C at 60% RH) and varying

RH at constant temperature (40%–75% RH at 25°C). From these two

experiments, it was observed that temperature was more important than

humidity at affecting survival. The effect of changing temperature on the

survival was dramatic. Peak survival of all three strains was estimated to occur

at 25°C, with rapid declines thereafter and a median survival time of less than

5 days at 32°C.
In terms of the potential for climate change to alter current transmission

patterns, there has been one published study. Moore et al. (2012) used a

deterministic model based on a series of ordinary differential equations that

described the rate at which tsetse flies become susceptible, exposed, infected

and recovered. The effect of changing temperature on the basic reproduc-

tive rate (R0) was then estimated from published studies on the effect of

temperature change on mortality, biting rate, parasite-biting rate and pop-

ulation growth rate. Changes in temperature over future decades were

drawn from the IPCC scenarios B1 and A2 to 2090. Population was assumed

to remain constant.

Moore et al. (2012) predicted that rather than expansion of the tseste fly

population under conditions set by the IPCC scenarios, there may be a shift
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of up to 60% in the geographical extent of the range. Under the A2 scenario,

there is likely to be range contraction by 2090 due to some regions of eastern

Africa becoming too hot to support the fly population.

In recognising the limits of their study, Moore et al. (2012) highlight a

point relevant to all modelling studies—namely that the modelling exercise

itself sets a framework for future projects rather than making any definitive

statements.

12. CONCLUSIONS

In writing this review, I examined the published peer-reviewed

literature for articles that represent interests in climate change and NTDs.

Climate change in this context primarily concerns forward looking,

decadal-scale changes and is therefore distinct from near or mid-term

forecasting which typically concerns within-decade timescales.

It is clear from reviewing the published literature that there is a relative

abundance of literature from previous decades, as well as more recently,

regarding the environmental factors that underpin the natural history of

several NTDs. In contrast, there is a paucity of forward-looking research

being conducted on the decadal timescale for the majority of infections. This

document therefore serves as a gap analysis as much as a review of the state of

the art.

One conclusion that is nonetheless shared among all research outputs is

that a changing climate is associated with spatiotemporal variation in expo-

sure and transmission of each species of infection. Along with other aspects

of global change (reviewed by Cable et al., 2017), it can be concluded that

there are likely to be profound yet hard-to-discern changes to global patterns

of NTD transmission in the near, mid- and long term. Some of these changes

may be extreme enough to cause elimination or extinction of parasites,

vectors and zoonotic hosts in localised, regional or global contexts (Cable

et al., 2017; Cizauskas et al., 2017).

The future can only be imagined and modelled, as we cannot draw data

down from the future. No model can capture every potential interaction,

and the increasingly fragmented nature of ecosystems (Haddad et al.,

2015) is an ongoing challenge in terms of providing mitigation and/or

adaptation (Villard and Metzger, 2014).

In the absence of sureties regarding the future, combined with recogni-

tion of the inherent complexities facing humanity, a viable response may be

to increase intersectoral collaboration so that, e.g., emerging knowledge in

one domain can be assessed for its utility in another domain. The ‘One
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Health’ concept is a potential avenue down which colleagues working on

NTDs from many disciplines could travel together (Webster et al., 2016).

One Health joins several other attempts to synthesise an integrated, multi-

disciplinary, multisectoral framework, including blue marble health (Hotez

et al., 2016) and planetary health (Horton et al., 2014). A complementary

approach may be to improve surveillance and adaptation efforts (Ebi

et al., 2013; Parham et al., 2015; Wilby and Dessai, 2010). It has been

advocated that these new approaches should be community-based (Ebi

and Semenza, 2008) and combine capacity building in modelling with

decision support tools that are sufficiently flexible and adaptive to emerging

conditions (Booth and Clements, 2018).

ACKNOWLEDGEMENTS
I would like to first acknowledge the contribution of all the scientists who undertook research

many decades ago into the natural history of what are now known as NTDs. Their work has

arguably more relevance than ever given the future uncertainties that we face. Those scientists

who have more recently advanced our knowledge of environmental change and its impact on

ecosystems have provided complementary knowledge that will significantly enhance the

potential for mitigation. I also thank the editors for the invitation to review this

important, yet still neglected, subject; an anonymous referee for several constructive

comments, Henry J. Booth for helpful advice on the figures, and Anna Fruehauf for

assistance with the bibliography.

REFERENCES
Aagaard-Hansen, J., Nombela, N., Alvar, J., 2010. Population movement: a key factor in the

epidemiology of neglected tropical diseases. Trop. Med. Int. Health 15 (11), 1281–1288.
https://doi.org/10.1111/j.1365-3156.2010.02629.x.

Abad-Franch, F., et al., 2015. On palms, bugs, and Chagas disease in the Americas. Acta
Trop. 151, 126–141. https://doi.org/10.1016/j.actatropica.2015.07.005.

Abbas, T., et al., 2017. Seasonality in hospital admissions of Crimean-Congo hemorrhagic
fever and its dependence on ambient temperature—empirical evidence from Pakistan.
Int. J. Biometeorol. 61, 1893–1897. Springer, Berlin/Heidelberg. https://doi.org/
10.1007/s00484-017-1359-4.

Aboagye, S.Y., et al., 2017. Seasonal pattern of Mycobacterium ulcerans, the causative agent
of Buruli ulcer, in the environment in Ghana. Microb. Ecol. 74 (2), 350–361. Springer,
USA. https://doi.org/10.1007/s00248-017-0946-6.

Adler, P.H., Cheke, R.A., Post, R.J., 2010. Evolution, epidemiology, and population
genetics of black flies (Diptera: Simuliidae). Infect. Genet. Evol. 10 (7), 846–865.
https://doi.org/10.1016/j.meegid.2010.07.003.

Afshan, K., et al., 2014. Impact of climate change and man-made irrigation systems on the
transmission risk, long-term trend and seasonality of human and animal fascioliasis in
Pakistan. Geospat. Health 8 (2), 317. https://doi.org/10.4081/gh.2014.22.

Aguiar, L.M.S., et al., 2016. Should I stay or should I go? Climate change effects on the future
of Neotropical savannah bats. Glob. Ecol. Conserv. 5, 22–33. https://doi.org/10.1016/
j.gecco.2015.11.011.

100 Mark Booth

https://doi.org/10.1111/j.1365-3156.2010.02629.x
https://doi.org/10.1016/j.actatropica.2015.07.005
https://doi.org/10.1007/s00484-017-1359-4
https://doi.org/10.1007/s00484-017-1359-4
https://doi.org/10.1007/s00484-017-1359-4
https://doi.org/10.1007/s00248-017-0946-6
https://doi.org/10.1016/j.meegid.2010.07.003
https://doi.org/10.4081/gh.2014.22
https://doi.org/10.1016/j.gecco.2015.11.011
https://doi.org/10.1016/j.gecco.2015.11.011


Aka, N.A., et al., 2008. Human paragonimiasis in Africa. Ann. Afr. Med. 7 (4), 153–162.
https://doi.org/10.4103/1596-3519.55660.

Ali, S., et al., 2017. Environmental and social change drive the explosive emergence of Zika
virus in the Americas. PLoS Negl. Trop. Dis. 11 (2). https://doi.org/10.1371/journal.
pntd.0005135.

Alm�en, A.-K., et al., 2014. Coping with climate change? Copepods experience drastic var-
iations in their physicochemical environment on a diurnal basis. J. Exp. Mar. Biol. Ecol.
460, 120–128. https://doi.org/10.1016/J.JEMBE.2014.07.001.

Amman, B.R., et al., 2012. Seasonal pulses ofMarburg virus circulation in juvenile Rousettus
aegyptiacus bats coincide with periods of increased risk of human infection. PLoS
Pathog. 8 (10), e1002877. https://doi.org/10.1371/journal.ppat.1002877.

Amraoui, F., Vazeille, M., Failloux, A.B., 2016. French Aedes albopictus are able to transmit
yellow fever virus. Euro. Surveill. 21 (39), 30361. https://doi.org/10.2807/1560-7917.
ES.2016.21.39.30361.

Amundson, R., et al., 2015. Soil and human security in the 21st century. Science 348 (6235),
1261071. https://doi.org/10.1126/science.1261071.

Ancillotto, L., et al., 2016. Extraordinary range expansion in a common bat: the potential
roles of climate change and urbanisation. Sci. Nat. 103 (3–4), 15. https://doi.org/
10.1007/s00114-016-1334-7.

Anthony, S.J., et al., 2017. Further evidence for bats as the evolutionary source ofMiddle East
respiratory syndrome coronavirus. mBio 8 (2), e00373–17. https://doi.org/10.1128/
mBio.00373-17.

Appleton, C.C., 2014. Paragonimiasis in KwaZulu-Natal province, South Africa.
J. Helminthol. 88 (1), 123–128. https://doi.org/10.1017/S0022149X12000831.
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