Sm-p80-based schistosomiasis vaccine: Preparation for human clinical trials

Afzal A. Siddiqui, Ph.D. Grover E. Murray Professor

Vice President, Texas Tech University Health Sciences Center Associate Chair, Internal Medicine, TTUHSC-School of Medicine Director, Center for Tropical Medicine & Infectious Diseases

(806) 743-2638 (office) | Afzal.Siddiqui@ttuhsc.edu

Science ranked schistosomiasis vaccine as one of the top 10 vaccines that need to be urgently developed (January 1, 2016, 351:16-19)

- Reliance on repeated treatment with praziquantel not adequate, infection rates continue to be high
- Development of drug resistance by the parasite?
- Durable reduction in the disease spectrum and transmission via vaccination linked with chemotherapy?
- A vaccine would contribute to the reduction of schistosomiasis morbidity through induced immune responses
 - 1. Neglected Tropical Diseases: Defining Opportunities to Accelerate Translational Research. NIAID/NIH, Bethesda, MD (March 9-11, 2011)
 - 2. Schistosomiasis Elimination Strategy and Potential Role of Vaccine in Achieving Global Health Goals Meeting, NIAID/NIH and the Bill & Melinda Gates Foundation, Seattle, WA (March 12-13, 2013)

Preferred product characteristics, NIAID/NIH, Bethesda, MD (Vaccine, 2016, 34:995; Trends Parasitol.2017, 33:194)

Acceptable features for a prophylactic schistosomiasis vaccine (Reduction in morbidity, rather than sterile immunity is the immediate target)		
Indication	\checkmark	Prevention of infection by one of the three human schistosome parasites
Target Populations	\checkmark	 Population in endemic countries Adults (18-59 years of age) in high-risk occupations or areas High risk school age children (3-12 years of age)
Efficacy	√	Reduce at least 75% infection by one of the schistosome species (Efficacy readout: egg output and/or worm burden)
Duration of Protection	\checkmark	2-3 years after last dosing
Dosage and Cost		Parenteral administration, 2 doses administration Less than \$1/dose
Product Criteria	\checkmark	 The vaccine antigen should not react to IgE from target population Can be co-administered with local MDA/other interventions
Manufacturing	\checkmark	Suitability for human trials: purity > 90% (Yield ~ 50 mg/L) Endotoxin levels < 50 EU/mg

Vaccination strategies using Sm-p80

Sm-p80 has been tested for its prophylactic efficacy in different vaccine formulations and approaches

- DNA
- Recombinant protein/adjuvant
- Prime/boost

Sm-p80-based vaccine formulations have been tested in three experimental animal models of infection and disease

- Mouse
- Hamster
- Baboon

ANNALS *of* the New York ACADEMY OF SCIENCES

Sm-p80-based schistosomiasis vaccine: <u>double-blind</u> preclinical trial in baboons demonstrates comprehensive prophylactic and parasite transmission-blocking efficacy Ann. N.Y. Acad. Sci. 1425 (2018) 38–51.

Annals Reports

A typical prophylactic vaccine efficacy protocol

Efficacy of Sm-p80/GLA-SE Vaccine

Modeling Studies Using Our Sm-p80/GLA-SE Data Imperial College: Sir Roy Anderson

Mathematical model for the evaluation of the potential impact of a partially efficacious vaccine on the transmission dynamics of Schistosoma mansoni in human communities (Parasites & Vectors 201710:294).

The impact of the transmission setting, R_{0} , for Model 1 on the temporal trend in the mean worm burden M, with 80% vaccine efficacy on parasite establishment only, i.e. $v_1 = 0$, $v_2 = 0$, $v_3 = 0.80$, for (a) p = 70% and (b) p = 85%. The starting value for the mean worm burden is $M_0 = 100$ per host and the vaccine protection is assumed to be lifelong, i.e. $\omega = 0$

- Vaccine efficacy of 60% will interrupt transmission in communities with low and moderate transmission.
- For high transmission settings, higher vaccine efficacies are required to interrupt transmission or multiple booster vaccine doses each year may be necessary.
- Vaccine that impacts either on worm establishment, worm fecundity or adult parasite survival in the human host is almost equally beneficial [all of theses are targeted by Sm-p80-based vaccine].
- Model shows that breaking transmission in even low intensity transmission areas, may take 18 years or more.

Deployment of Sm-p80-based vaccine

• Approach: Mass Drug/ Vaccine Administration or MDVA

Schematic representation of experimental design mimicking natural conditions of schistosomiasis in field conditions

Ann. N.Y. Acad. Sci. 2018, 1425:19-37

Vaccine efficacy in simulated conditions of endemic areas

Ann. N.Y. Acad. Sci. 2018, 1425:19-37

Summary from Published Literature

Efficacy of Leading Vaccine Candidates at Different Levels of Infection, Disease and Transmission

Roadmap for Sm-p80/GLA-SE Vaccine (SchistoShield®)

(U.S. Patent No. 9,248,169; India Patent No. 10079/DELNP; Chinese Patent No. 201080035900X; Brazilian Patent No. 1015136-2)

